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Abstract: Based on the study of matrix theory, the conditions of matrix commutability are 
given and some properties of matrix commutability are obtained. The relationship between 
matrix characteristic polynomial and minimum polynomial, matrix and linear transformation 
relationship and other knowledge are used. 

1. Matrix exchangeability 

1.1 Definition of matrix exchangeability 

If A and B are two n-order square matrices, if AB = BA, then a and B can be exchanged. 
We mainly consider that we know a matrix A and find all the matrices that can be exchanged with 

it Therefore, we define the whole matrix that can be exchanged between all and a, which is recorded 
as C (A) Note that F (A) is all generated by the polynomial of matrix A. 

Theorem 1: For any a, ab = Ba is equivalent to (A-AE) B = B (A-AE). 
In fact, (A-AE) B = B (A-AE) can be transformed into AB-B = BA-B, that is AB = BA 

2. The Internal Relationship between F(A) and C(A) in Matrix Exchangeability 

Theorem 2.1: Sets A to an n-order square matrix of domain P. 
[1]. Subspaces of spaces composed of all n-order square matrices on the domain P of all 

components of matrices that can be exchanged between all and A. 
[2]. F(A) is a linear space generated by the polynomial of matrix A, and F(A) is included in C(A). 
The proof process: [1] because en is in C (A), C (A) is non null Let B, C in C (A), then BA = AB, 

CA = AC, so A (B + C) = (B + C) A, ie B + C in C (A), (KB) A = A (KB), ie kb in C (A) Corroborated 
[2] Since the polynomials of a matrix are exchangeable with the matrix, the conclusion holds. Further 
elucidation of their two connections follows 

Theorem 2.2: Let A be an n-class nonzero matrix over the number domain P, the minimum number 
of polynomials m (x) for A be r, then the set V = {f(A)|f(x) ∈ P[X]} with respect to the additive sum 
of matrices constitutes the linear space in the R dimension, and E,A,⋯,Ar-1 is a set of bases for V. 

The proof process: f(x) = x ∈ V , So V  is non null. Arbitrary f(x), g(x) ∈ P[X], k ∈ P, 
(f(x)+g(x))∈P[X], kg(x)∈P[X], So V satisfies additive and number by closure So V is the subspace 
of Mn (P), that is, the additive and number multiplication of V about the matrix constitutes the linear 
space It is demonstrated below that V constitutes a linear space in the R dimension, and E,A,⋯,Ar-1 
is a set of bases of V.  
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a) Suppose that there exists k0,⋯,kr-1, that is not fully zero such that k0E+k1A+⋯+kr-1Ar-1=0, 
Then the polynomial k0+k1x+⋯+kr-1xr-1 is a zeroing polynomial that is strictly lower in number 
than the minimal polynomial, which contradicts the definition of the minimal polynomial, so 
there must be k0=⋯=kr-1=0, E,A,⋯,Ar-1 linear independence. 

b) For an arbitrary  f (x) ∈ P [x] , by the band residual division, there exists q(x), r(x) such 
that f(x) = q(x)m(x) + r(x), Where r(x)=0 or 𝜕𝜕(r(x))<𝜕𝜕(m(x)), let r(x)=br-1xr-1+⋯+b1x+b0, 
and thereby.  
f(A)=q(A)m(A)+r(A)=br-1Ar-1+⋯+b1A+b0E. This illustrates that an arbitrary matrix in V can 
all be linearly expressed by E,A,⋯,Ar-1. So E,A,⋯,Ar-1 is a set of bases of V, thus dimV = r.  

3. Application of the characteristic polynomial equal to the smallest polynomial 

Now give a more general conclusion: 
Theorem 3.1: Let A,B be linear transformations of the n-dimensional linear space over the number 

domain P, and it is known that the characteristic polynomial of A equals the smallest polynomial, both 
f(λ)=λn+a1λn-1+⋯+an, 

[1]. The matrix of A under a certain set of bases α1,⋯αn-1 is:  

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 −𝒂𝒂𝒏𝒏
𝟏𝟏 𝟎𝟎 ⋱ 𝟎𝟎 −𝒂𝒂𝒏𝒏−𝟏𝟏
𝟎𝟎 𝟏𝟏 ⋱ 𝟎𝟎 ⋮
⋮ ⋱ ⋱ 𝟎𝟎 −𝒂𝒂𝟐𝟐
𝟎𝟎 ⋯ 𝟎𝟎 𝟏𝟏 −𝒂𝒂𝟏𝟏 ⎦

⎥
⎥
⎥
⎤

 

[2]. Versus that in [1] α1, there is α1, Aα1,⋯, 𝐀𝐀𝒏𝒏−𝟏𝟏α1 also based. 
[3]. If AB = BA, then there exists l0,⋯,ln-1∈P, such that 𝐁𝐁=∑ 𝒍𝒍𝒋𝒋𝐀𝐀𝒋𝒋𝒏𝒏−𝟏𝟏

𝒋𝒋=𝟎𝟎 , that is, F (A)  =  C (A) 
(that is, the linear transformations exchangeable with A are all A polynomials) 

The proof procedure:  
[1]. Let any e1,⋯,en be a set of bases for V, let the matrix of the linear transformation A under this 

set of bases be B, then the characteristic polynomial of B is equal to the smallest polynomial 
equal to the last invariant factor, so the invariant factor of B is 1,⋯,1, f(λ).In considering λE-
A shows that the determinant factor of matrix A is 1,⋯,1, f(λ), Then the invariant factor of a 
is also 1,⋯,1, f(λ).So A, B have the same invariant factor, so a, B are similar, and there exists 
a reversible array P such that p-1ap = B, so there must be a set of bases α1,⋯αn-1 such that A 
in the matrix under α1,⋯αn-1 is A. 

[2]. Because A has a matrix under some set of bases α1, ⋯ αn-1, there is A. so 
𝑨𝑨α1=α2,𝑨𝑨α2=α3,⋯,𝑨𝑨αn-1=αn, that is, α1,𝑨𝑨α1,𝑨𝑨𝑛𝑛−1α1 also based. 

[3]. Since AB = BA, for any integer k, 𝑨𝑨𝑘𝑘𝐵𝐵 = 𝐵𝐵𝑨𝑨𝑘𝑘 . For an arbitrary α ∈ V , let 
α=∑ 𝑘𝑘𝑖𝑖𝑛𝑛−1

𝑖𝑖=0 𝑨𝑨𝑖𝑖𝛼𝛼1, 𝐵𝐵𝛼𝛼1=∑ 𝑙𝑙𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 𝑨𝑨𝑗𝑗𝛼𝛼1,so:  

𝐵𝐵α = 𝐵𝐵∑ 𝑘𝑘𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 𝑨𝑨𝑖𝑖α1 = ∑ 𝑘𝑘𝑖𝑖𝑛𝑛−1

𝑖𝑖=0 𝐵𝐵𝑨𝑨𝑖𝑖𝛼𝛼1 = ∑ 𝑘𝑘𝑖𝑖𝑛𝑛−1
𝑖𝑖=0 𝑨𝑨𝑖𝑖ℬ𝛼𝛼1 = ∑ 𝑘𝑘𝑖𝑖𝑛𝑛−1

𝑖𝑖=0 𝑨𝑨𝑖𝑖(∑ 𝑙𝑙𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 𝑨𝑨𝑗𝑗𝛼𝛼1) =

∑ 𝑙𝑙𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 𝑨𝑨𝑗𝑗(∑ 𝑘𝑘𝑖𝑖𝑛𝑛−1

𝑖𝑖=0 𝑨𝑨𝑖𝑖𝛼𝛼1) = ∑ 𝑙𝑙𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 𝑨𝑨𝑗𝑗α. 

Because the arbitrary nature of α is known, 𝐵𝐵 = ∑ 𝑙𝑙𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 𝑨𝑨𝑗𝑗 is F (A) =C(A).  

4. Applications of exchangeable matrices for dealing with certain problems 

Theorem 4.1: Let V be an n-dimensional linear space on the complex domain, A, B be linear 
transformation on V, satisfying AB = BA. then A, B have A common eigenvector. 

The proof procedure: As known from the knowledge of the invariant subspace, both the feature 
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subspaces of A are invariant subspaces of B, now take Vλ Is the eigenvalue of A, λ of the feature 
subspace, then Vλ is the invariant subspace of B, 𝐵𝐵|Vλ is the Vλ A linear transformation, because it 
is considered in the complex domain, the linear transformation certainly has eigenvalues, let μ 
corresponds to the characterized subspace Vμ⊂ RVλ. Any nonzero vector α∈Vμ, that α∈Vλ, so there is 
𝐵𝐵α=μα, there is also 𝐴𝐴α=μα, α is the common eigenvector of A, B 

[1] has the above theorem, and the following can also be obtained with ease: let v be the n-
dimensional linear space on the complex domain, A, B be the linear transformation on V satisfying 
AB = BA, and if a has s mutually distinct eigenvalues, then A, B have at least s common and linearly 
independent eigenvectors demonstrating that the methods are generally similar, here is actually 
generalizing the number of eigenvalues. 

There are other forms of the above conclusion, such as: let v be the n (which is odd) dimensional 
linear space on real domain, A, B be the linear transformation on V satisfying AB = BA, then A, B 
have common eigenvectors This general idea is similar at the time of demonstration, but requires to 
come to a conclusion that the dimension of the root subspace  𝑘𝑘𝑘𝑘𝑘𝑘(𝒜𝒜 − 𝜆𝜆𝑖𝑖ℰ)𝑟𝑟𝑖𝑖 equals an algebraic 
weight of 𝜆𝜆𝑖𝑖, 𝑟𝑟𝑖𝑖 (which holds true for any i), such that taking Vλ,Vμ above guarantees a eigenvalue 
and, in turn, allows the proof to continue 

Theorem 4.2: Let A, B be two arrays of order n over the complex domain, AB = BA, then A, B 
have common eigenvectors. 

The proof procedure: by theorem 4.1, the above conclusion is the matrix language and obviously 
holds note it is more difficult to prove this theorem directly because the matrix is free of invariant 
subspace. 

Theorem 4.3: Let A, B be a matrix of order n on the complex domain, AB = BA, then there exists 
a reversible matrix P-1BP such that P-1AP is simultaneously an upper triangular matrix with P.  

The proof procedure: For n as mathematical induction. With n = 1, the conclusion clearly holds 
suppose that the conclusions hold for n-1, considering the case of order n. 

Because A, B are matrices of order n on the complex domains, AB = BA, by theorem 4.2, A, B 
have common eigenvectors, denoted by α1, let Aα1=λα1,Bα1=μα1, put α1 is extended by α1,⋯,αn, set 
of bases Cn, denoted P1=(α1,⋯,αn) of Cn, which is a reversible matrix that satisfies 

𝑃𝑃1−1𝐴𝐴𝑃𝑃1 = �𝜆𝜆 𝛼𝛼′
0 𝐴𝐴𝑛𝑛−1

�, 𝑃𝑃1−1𝐵𝐵𝑃𝑃1 = �𝜇𝜇 𝛽𝛽′
0 𝐵𝐵𝑛𝑛−1

�, 

AB=BA, soP-1APP-1BP=P-1BPP-1AP, 

�𝜆𝜆 𝛼𝛼′
0 𝐴𝐴𝑛𝑛−1

� �𝜇𝜇 𝛽𝛽′
0 𝐵𝐵𝑛𝑛−1

� = �𝜇𝜇 𝛽𝛽′
0 𝐵𝐵𝑛𝑛−1

� �𝜆𝜆 𝛼𝛼′
0 𝐴𝐴𝑛𝑛−1

�, 

So: 

�𝜆𝜆𝜆𝜆 𝜆𝜆𝛽𝛽′ + 𝛼𝛼′𝐵𝐵𝑛𝑛−1
0 𝐴𝐴𝑛𝑛−1𝐵𝐵𝑛𝑛−1

�=�𝜆𝜆𝜆𝜆 𝜇𝜇𝛼𝛼′ + 𝛽𝛽′𝐵𝐵𝑛𝑛−1
0 𝐵𝐵𝑛𝑛−1𝐴𝐴𝑛𝑛−1

�, 

𝐴𝐴𝑛𝑛−1𝐵𝐵𝑛𝑛−1 = 𝐵𝐵𝑛𝑛−1𝐴𝐴𝑛𝑛−1, Using the inductive assumption, there is a reversible array Q of n-1 levels 
such that Q-1𝐴𝐴𝑛𝑛−1Q is simultaneously an upper triangular matrix with Q-1𝐵𝐵𝑛𝑛−1Q, taken  

𝑄𝑄1 = �1 0
0 𝑄𝑄�, 

So 𝑄𝑄1−1𝑃𝑃1−1𝐴𝐴𝑃𝑃1𝑄𝑄1 = �
𝜆𝜆 𝛼𝛼′𝑄𝑄
0 𝑄𝑄−1𝐴𝐴𝑛𝑛−1Q�  and 𝑄𝑄1−1𝑃𝑃1−1𝐵𝐵𝑃𝑃1𝑄𝑄1 = �

𝜇𝜇 𝛽𝛽′𝑄𝑄
0 𝑄𝑄−1𝐵𝐵𝑛𝑛−1Q�  all were upper 

triangular arrays. So 𝑃𝑃 = 𝑃𝑃1𝑄𝑄1. 
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