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Abstract: This article proposes a recursive layered network reconstruction method with 

pixel-wise attention cost aggregation to address the problems of textureless areas and poor 

reconstruction results at scene edges in multi-view stereo matching methods. First, 

multi-scale features of multiple images are extracted through downsampling and 

transformed into a cost volume using three-dimensional differentiable homography. Then, 

a pixel-wise attention aggregation module is added to the cost volume aggregation stage to 

reweight different pixels and generate a new cost volume. Next, a network with recursive 

layers is used to regularize the cost volume, replacing the traditional 3D CNN network, and 

an initial depth map is generated. Finally, the filtered and refined depth maps are merged to 

generate a three-dimensional dense point cloud. Experimental results show that the 

proposed network model improves completeness, accuracy, and overall quality by 0.377, 

0.363, and 0.370, respectively, compared to other network models, and produces more 

complete point cloud reconstructions in weak texture areas and scene edges. 

1. Introduction 

Multi-view stereo (MVS) is a method of reconstructing a real 3D scene based on the principle of 

multi-view geometry, which utilizes the parallax information between images from multiple 

viewpoints to infer the depth and 3D shape of the scene, and is weakly interfered by the 

environment and low-cost compared to the traditional methods that require hardware such as 

structured-light scanners to acquire the 3D scene. The dense point cloud generated by MVS has rich 

environmental information and can well reflect the spatial geometric relationship of objects, so it 

has become a popular method for a wide range of application scenes, such as cultural heritage 

protection, autonomous driving, virtual reality, etc. [1], so it has become a research hotspot in the 

field of 3D reconstruction technology. In the traditional multi-view stereo matching method, the 

SFM (Structure from Motion) algorithm first estimates the camera position and obtains the 3D 

sparse point cloud of the target, and then performs dense point cloud reconstruction. Traditional 

methods [2] rely on image changes in obvious regions to design manual features such as SIFT 

operator and ORB operator for image matching, but for rotating, lighting changes in the image 
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feature extraction becomes difficult, so the traditional MVS method has a narrow range of 

applications and can not reconstruct texture-poor regions. 

In recent years, deep learning has been widely used and achieved great success first in the field 

of image recognition [3], and then various stereo matching methods based on deep learning have 

also been proposed. Currently, neural network training is used in all deep learning based 3D 

reconstruction algorithms, and the global information of the scene is learned through convolutional 

units on the image features to achieve high accuracy and high integrity reconstruction results [4-6]. 

YAO et al [7] at the Hong Kong University of Science and Technology proposed an end-to-end 

network model MVSNet (multi-view stereo network) based on depth maps, which applies the 

costumers to 3D CNN regularization and thus depth regression, which greatly improves the 

performance of three-dimensional reconstruction, but it is affected by the number of depth samples, 

and occupies a high level of computational resources, and then Yao et al [8] improved the network 

model and proposed RMVSNet (Recurrent multi-view stereo network), which reduces the resource 

consumption but the effect is not obvious. Chen et al [9] proposed a direct point-based matching 

cost regularization method PointMVSNet (Point multi-view stereo network). View stereo network). 

The method adopts a coarse-to-fine depth estimation strategy to directly generate a 3D point cloud 

based on the initial depth map, but the reconstructed scene represented by the mesh and faceted 

sheet is not smooth, resulting in the loss of scene edge details. In order to alleviate the problem of 

high computing resource consumption, there are many methods in this study, such as 

CasMVSNet(cascaded multi-view stereo network); CVP-MVSNet(Cost volume pyramid 

Multi-view stereo network); UCS-Net(Uncertainty Sensing Cascade Stereoscopic Network) etc. 

This study first predicts low-resolution depth maps with large depth intervals, and then successively 

elevates the coarse sample to a fine strategy to increase the depth range and resolution [10-12]. 

Although the multi-stage approach reduces the graphics memory consumption, it is not obvious for 

image feature detail extraction and does not solve the problem of texture scarcity. Yan et al [13] 

from Peking University proposed D2HC-RMVSNet (Dense Hybrid Recurrent multi-view stereo 

network) using a recurrent recurrent neural network approach in the depth direction, which 

introduces different expansion layers to generate multiple scales of background information, and 

adopts a recurrent recurrent neural network in the regularization process to The regularization 

process uses a recurrent recurrent neural network to reduce the model memory footprint, and finally 

replaces the previous fixed viewpoint thresholding method with an overall consistency metric to 

retain more accurate depth values. This method has excellent results in the end, but the accuracy 

and completeness of the final generated point cloud model is not obvious. Therefore, the main 

problems of the current deep learning multi-view stereo are: 1) it is difficult to ensure the accuracy 

and completeness of the reconstruction effect while reducing the memory consumption; 2) the 

multi-view matching cost aggregation process rarely considers the pixel-by-pixel visibility problem, 

which leads to the poor quality of the final reconstruction, especially in the case of texture scarcity 

and view edges, which will result in a serious loss of details. 

In order to solve the above problems, this paper proposes a hierarchical recursive multi-view 

stereo network with pixel-by-pixel attention aggregation module based approach. The hierarchical 

recurrent network consumes less memory than the classical hierarchical network and can 

reconstruct higher resolution images; meanwhile, the pixel-by-pixel attentional aggregation module 

is added to assign higher weights in the matched views to overcome the difficulties of texture 

scarcity and less edge information in complex fields. 

2. Network Models 

The design of the network model in this paper follows the rules of camera geometry, draws on 
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the experience of previous MVS methods, and uses a typical learning-based MVS flow model. The 

network goes through several major modules including: feature extraction, costum construction and 

aggregation, costum regularization, and depth map estimation, and the network architecture is 

shown in Fig. 1. The input image is divided into 1 reference image and N-1 source images, and the 

feature maps of all images share weights using an encoder, and then 3D costomes are constructed 

by the differentiable singular response transform, and after regularizing the costomes to obtain the 

probability bodies, the probability bodies can be used to generate predicted depth maps as shown in 

Fig. 1, and finally all depth maps are filtered and fused to obtain a dense point cloud. 

 

Figure 1: Overall network structure 

2.1 Feature Extraction 

First, the network performed feature extraction to extract N feature maps from N images. Then, a 

2D CNN network was utilized to obtain the depth feature information of the images at each spatial 

scale. Then, using eight 2D convolutional layers, the features were downsampled in the third and 

sixth layers, resulting in three different scale features. Thanks to the three different scale features, 

different levels of feature information can be extracted. Convolutional neural network is adopted to 

extract features from the image and the local features in the image are represented by the 

convolutional kernel. Each layer in the feature extraction comes with BN regularization as well as 

ReLU activation, which is used to improve the fitting ability of the model. Like the traditional 

matching task, by using the same network, weight sharing of image features can be achieved to 

enhance the learning. After feature extraction the network outputs N 32-bit channel feature maps 

that are quadruple reduced in length and width, after downsampling all the pixel information of the 

image has been encoded into the extracted feature maps, so that no contextually important 

information is lost when stereo matching is performed, which significantly improves the quality of 

the reconstruction as compared to stereo matching using the original image. 

2.2 Construction of Costumers 

After completing the feature extraction, the costal body is obtained by making depth assumptions 

on the feature maps of N-1 source images and 1 reference image. A planar scanning algorithm is 

used to obtain the depth of each feature map, due to the different viewpoints of each image, it is 

necessary to convert one viewpoint to another, the mapping relationship between the reference 
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feature map and the source feature map can be described as a 3D differentiable monoresponsive 

transform as in Equation (1) 

( ) 1 1d

i i i ref refH dK TT K                               (1) 

Through the microsingle reactivity transform, the viewpoint of the reference image is converted 

to the stereo space corresponding to the viewpoint of the source feature map, and after N-1 feature 

map mapping a feature costum is formed , where and  denote the camera internal and 

external parameters, respectively. The cost body is calculated as follows 

( ) ( ) 2( )d d

i srci refc f f                               (2) 

denotes the th source image feature extraction and  denotes the reference image 

feature extraction. 

After constructing the volume of the costumers for each view, the next step is to aggregate all the 

image costumers into one costumers for regularization. It is common practice to perform variance 

computation on N-1 costomes, with the underlying principle that all views should be equally 

important. However, in practice this does not make sense because of the presence of varying 

shooting angles, problems such as occlusion or different lighting conditions causing 

non-Lambertian surfaces, and the presence of weakly textured regions in some views. Faced with 

differences between pixels in different views, different weights need to be weighted, and averaging 

does not work for different pixel weights. 
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Figure 2: Pixel-by-pixel attention aggregation module 

Therefore, in this paper, a pixel-by-pixel attention aggregation module, as shown in Fig. 2, is 

used to deal with costumers with different viewpoints, which is defined as 
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For the input H × W × 32 costumers, the number of 32-bit channels is divided into 4, 4, 4, 1, and 

after reweighting by the H × W × 1 attention map, all costumers are summed and divided by . 

In Eq. (4) denotes Hadamard multiplication and is a pixel-by-pixel attention map generated 

adaptively based on the per view cost body in such a way that pixels that may be confusingly 

matched are suppressed and pixels with critical contextual information are given greater weight and 

 prevents over-smoothing better than . 
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2.3 Costumer Regularization 

The costum regularization is to generate a probabilistic volume P from the costums obtained 

above for generating the depth map. In classical networks, the cost body regularization phase uses 

the U-Net [14] network based on the 3D CNN "encoding-decoding" architecture, due to the 

excessive computation of 3D CNNs this method causes huge memory and graphics memory 

consumption, which restricts the improvement of the image resolution, and also reduces the 

improvement of the accuracy. So in this paper we use recurrent recurrent neural network to adjust 

the costumers and use hybrid approach of RNN and CNN to avoid loss of accurate pixels. Thus, the 

depth map can be estimated over a very large depth range using recurrent networks and the memory 

consumption can be effectively reduced. 

 

Figure 3: CNN-RNN hybrid network architecture 

In this paper, costum regularization is done by a recursive approach using a hybrid CNN-RNN 

network structure with LSTM module [15]. In the regularized network, feature transfer occurs in 

both horizontal and vertical directions. In the vertical direction, each 3D costumed body is 

regularized by a CNN with an encoder-decoder architecture. In the horizontal direction, there are 

five parallel RNNs transferring the results of the previous recursive convolution to the latter through 

a recursive convolutional layer (ConvLSTMCell), as shown in Fig. 3. Assuming that the cost body 

at depth  is processed by the th convolutional layer denoted as , the depth  of the 

output of this layer is and the storage is kept in state , ConvLSTMCells operates as 

follows. 

First and are connected together by convolutional layer processing, and the LSTM 

portion of each ConvLSTMCell is divided into 4 variables as 
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All signals in the convolutional processing space are two-dimensional and the final output is 

( 1)d d
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2.4 Depth Map Estimation and Optimization 

After obtaining the costum C, external conditions such as ambient lighting, lens resolution, 

camera angle, etc. will negatively affect the image sampling quality, and direct depth prediction will 

affect the prediction accuracy due to the presence of noise, so preprocessing is needed to remove 
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the noise effect. Since the 2D image features have been transformed into spatial 3D model features 

with depth, ordinary convolutional networks are not capable of feature processing of depth 

information, so it is necessary to convert the regularized cost body C into the probability body Р by 

applying the SoftMax classification operation [16], so as to generate the predicted depth maps in the 

following. 

The traversal of the pixel points is performed next, and the final depth estimate will be 

determined based on the probability distribution of the depth sampling values corresponding to each 

pixel point. When the probability body is known, the simplest method is to directly use the 

maximum value in the depth probability map to estimate the depth maps of all pixels in the 

reference image according to the "winner-takes-all" principle [17]. The network uses the Argmax 

operation [18] for depth value regression to estimate the depth values of the pixels as follows 

max

min

× ( )
d

E

d d

d d P d


                                  (8) 

In Eq. (8),  is the probabilistic predicted value of the pixel at depth  and  are 

the maximum and minimum values of depth sampling, respectively. Compared with directly using 

the depth value with the largest probability, the evaluation method of Eq. (8) better considers the 

result predicted by the pixel at all depths, and obtains a smoother and more continuous depth map. 

At the same time, this summation is derivable, so an end-to-end network model can be constructed. 

To facilitate the subsequent optimization operation, the depth of the depth image is quantized to 

take a value between 0 and 1 during the summation and converted back to the normal depth at the 

end of the optimization. 

The depth estimation task is different from the regression task due to the fact that the cost body 

regularization transforms the matching cost computation into a pixel-by-pixel probability 

distribution for depth prediction. So the cross-entropy loss function is used to measure the 

difference between the probability body P and the one-hot coding body G of the true depth map, 

defined as 

1
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In Eq. (9),  denotes the valid set of pixels,  denotes the probability of the true depth 

map at pixel , and denotes the predicted probability of the depth map at pixel . 

3. Experiments and Results 

In this paper, we use the DTU dataset for training and testing. The DTU dataset is a classical 

large-scale dataset that is widely used for multi-view 3D reconstruction. The dataset was collected 

under well-controlled laboratory conditions with fixed camera trajectories. It contains 49 views 

covering 128 scans under 7 different lighting conditions. These views are divided into 79 training 

sets, 18 validation sets, and 22 evaluation sets, and each image has a resolution of 1600 × 1200. in 

total, there are 27,097 training samples for each image. In addition, the dataset provides the truth 

values of the dense point cloud, which facilitates the evaluation of the method. 

3.1 Network Training 

In this paper, the PyTorch framework is used to implement the network model, and the training 

data comes from the DTU training set, which contains a total of 3791 images. During the training 

process, the image size is set to 160×128, the number of input images is N=7, and the depth 

( )P d maxd mind

pv ( ) (p)dG

p ( ) (p)dP p
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direction is uniformly sampled, so the number of depth layers is D=192.The network is trained 

using an end-to-end approach using the Adam optimizer, with an initial learning rate of 0.001 for a 

total of 16 epochs, and the learning rate will be adjusted after each epoch with a 0.9 decay rate. The 

training process is performed on a server with a Tesla P40 GPU with 24G of video memory and the 

batch size is set to 2. 

3.2 Network Test 

The method in this paper has high storage efficiency and can handle higher resolution images 

and finer depth planar scans. In the testing phase the number of input images is set N=7 and depth 

layer assumption D=512 to obtain finer depth maps. The height and width of the input image must 

be a multiple of 8 due to the network parameters. Finally, the input image with 800×600 resolution 

is used for DTU evaluation. Before testing on other scenarios or datasets, the corresponding 

structure of the network model needs to be fine-tuned to improve various scenario adaptations. If 

self-built datasets are used, the parameters of the estimated depth range and the camera need to be 

requested to adapt the network thus preserving the content information near the image boundaries. 

The experimental tests were conducted on a GPU GTX 1080 Ti and a CPU of 6-core Intel(R) 

Xeon(R) CPU E5-2650 v4 2.20GHz with 30G of memory. 

3.3 Point Cloud Test Results 

This was accomplished using the official evaluation protocol for the DTU dataset [19], under the 

point cloud model. The reconstruction accuracy (Acuracy.Acc) and completeness (Completeness, 

Comp), as well as the combination of both, i.e., Overall (OA), were evaluated.  

Accuracy (Acc): represents the distance within the visual mask from the MVS reconstruction 

point to the nearest point of the structured light scanning model (the mask is calculated based on the 

effective measurement area of the structured light model).  

Completeness (Comp): defined as the distance of each point in the structured light scan model to 

the nearest point of the MVS reconstructed model.  

Overall (OA): The average of Accuracy and Completeness, calculated by the following formula 
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 in Eq. (10) denotes the set of all points in the 3D point cloud after reconstruction by the 

algorithm, and  in Eq. (11) denotes the set of all points in the standard point cloud generated by 

structured light scanning. Lower values of the above three evaluation indexes indicate better 

reconstruction quality. Finally, Num represents the number of points in the point cloud model, and 

in general, the larger the value of points in the same model, the better the reconstruction effect. 

1S

2S
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Figure 4: Comparison effect of densely reconstructed point cloud of DTU dataset 

To validate the reconstruction results of the proposed method, a comparison is made with the 

classical traditional method Clomap and the deep learning based methods D2HC-RMVSNet, 

RMVSNet and MVSNnet, as shown in Figure 4. Where the rectangular box is the detail comparison 

area. In terms of reconstruction details, the method in this paper is more complete than the other 

methods after reconstructing the texture-deprived regions, and the scene edges are more sufficiently 

detailed. In the final scan9, the scene edge details are fuller, and the rectangular boxed area also 

clearly presents the text, which shows that the network effectively improves the reconstruction 

effect. At the same time, the characteristics of these methods can be observed through experiments, 

of which a) is a structured light scanner to generate real point cloud data, and the results produced 

by this kind of hardware devices can truly reflect the scene information. However, due to 

environmental factors, it is difficult to reconstruct a non-diffuse reflective scene and the 

reconstruction area is small. b) The traditional depth-based image method cannot predict the depth 

information of the texture-deprived region, which leads to the phenomenon of obvious voids in the 

weak texture region. c) The deep learning-based method can predict some information of the 

texture-deprived region through learning, but the traditional 3D CNN network cannot predict the 

context information, and there is still a reconstructed scene. d) The deep learning-based method 

cannot estimate the texture information of the texture-deprived region through learning, but it 

cannot use the traditional 3D CNN network to reconstruct the scene. Contextual information, and 

there is still the phenomenon of reconstructed scene voids. d) The method uses a recurrent network 

to regularize the costumers, and is able to reconstruct a complete dense point cloud, but it does not 

consider the pixel visibility problem, and there is still the problem of indistinctness and difficulty in 

reconstructing the weak texture. 

From the comparison effect of DTU dataset, it can be seen that the enhancement of this paper's 

method comparing with the traditional method, especially in the texture-deprived region and the 

edge region of the scene, the reconstruction of dense point cloud model is more complete. Then 

comparing with other network models, this paper's method can obtain more information at the edge 

of its reconstructed scene, which makes the edge details richer. The method in this paper effectively 

improves the above phenomenon, thanks to the pixel-by-pixel attention aggregation module and the 

recursive network's processing of texture-deprived regions and scene edge details. In addition, this 

paper also calculates the quantitative results of the above objective metrics, accuracy, completeness 

and wholeness, as shown in Table 1. 
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Table 1: Quantitative results of DTU dataset 

 Acc Comp Overall Num 

PMVS[20] 0.613 0.941 0.777 117320 

Clomap[2] 0.400 0.664 0.532 1310014 

MVSNet[7] 0.396 0.527 0.462 3682198 

RMVSNet[8] 0.385 0.459 0.422 5343617 

D2HC-RMVSNet[13] 0.395 0.378 0.386 13373332 

Ours 0.377 0.363 0.370 13996472 

In Table 1, it can be seen that comparing the various methods, although the accuracy of this 

paper's method is not significantly improved compared to other networks, the quality of 

completeness and integrity is better than that of the above methods, and has a significant advantage. 

Compared with other deep learning based methods, this paper's method improves accuracy by 3.7%, 

completeness by 23.9%, and integrity by 14.4% on average, which proves the effectiveness of this 

paper's method. 

3.4 Ablation Experiment 

In order to validate the performance of the network proposed in this paper, ablation experiments 

are performed to describe the effect of adding certain parts of the network on the results in order to 

better understand the network behavior. The addition and deletion of the pixel-by-pixel attention 

aggregation module proposed in this paper is studied on Baseline to qualitatively analyze the 

effectiveness and costuming of the proposed method, and the results are shown in Table 2. The 

following ablation experiments are performed on the DTU dataset using the same parameters 

comparing different network architectures. Baseline generalizes 2D CNN for feature extraction and 

takes the same hybrid CNN-RNN network for costum regularization without any additional 

modules. 

Table 2: Quantitative results of ablation experiment 

Model Acc Comp Overall Mem(GB) 

Baseline 0.408 0.374 0.391 2.42 

Ours 0.377 0.363 0.370 2.63 

MVSNet 0.396 0.527 0.462 15.4 

R-MVSNet 0.385 0.459 0.422 6.7 

As shown in Table 2, the Mem values in the table are the average memory consumption for 

estimating the depth maps of the above scenarios, it can be seen that the advantage of integrating 

the costal regularized CNN-RNN hybrid network is significantly lower than that of MVSNet and 

R-MVSNet in terms of memory consumption. and with the addition of the pixel-by-pixel attention 

aggregation module, the accuracy improves by 0.031 after increasing the memory consumption by 

only 0.21 GB, and the Overall decreased from 0.391 to 0.370.Both this paper's method and Baseline 

use recurrent networks, and from Figure 5, it can be seen that the memory consumption is smaller in 

specific scenarios, which proves that the hybrid CNN-RNN network structure of LSTM reduces the 

memory consumption. This also indicates the advantage of this paper's method in terms of memory 

consumption for denser reconstruction work on higher resolution images. 
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Figure 5: Comparison of memory consumption in each scenario 

4. Conclusion 

In this paper, we propose a pixel-by-pixel attentional aggregation approach for multiview stereo 

matching, which an end-to-end is deep learning architecture based on depth maps. Adopting the 

streaming mode of the classical MVSNet architecture and making improvements in the costum 

aggregation process, the use of pixel-by-pixel attention aggregation is able to process more details 

in the scene and effectively improves the reconstruction performance at the edges of the scene and 

in weakly textured regions. A recurrent network with recursive layering is used instead of the 

traditional 3D CNN, which significantly reduces the memory consumption and is more efficient. 

And experiments are conducted on the dataset DTU to compare the quantitative effect with the 

existing methods, and the final experiments show that the method in this paper significantly 

improves the reconstruction effect compared with the methods with excellent reconstruction effect 

in the current stage, which confirms the effectiveness of the method. 

Although this paper's method is excellent under the laboratory indoor dataset, the network needs 

to improve the generalization ability considering the practical operation afterwards. In the future, 

reconstruction using large outdoor datasets while ensuring the existing accuracy is a key direction 

for research. 
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