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Abstract: Federated Learning (FL) has emerged as a critical technology to train deep 

learning models across massive decentralized IoT data on-device. While FL preserves data 

privacy, it encounters challenges like synchronization latency for model aggregation and 

single-point failures. In response to these issues, Hierarchical Federated Learning (HFL), 

which employs edge servers near edge devices to reduce synchronization latency and 

enhance resilience against single-point failures, has been proposed. However, the 

assumption of labeled edge devices, i.e, labeled data on edge devices, often proves 

impractical. Recent researches on semi-supervised FL enable model training for unlabeled 

edge devices, yet integrating these into HFL presents challenges in balancing model 

accuracy and training efficiency. This paper introduces FLAGS, a novel semi-supervised 

HFL system with adaptive global aggregation intervals. Building on the HFL system, 

FLAGS conducts alternate training between labeled cloud data and unlabeled edge devices. 

Through an adaptive global aggregation intervals control algorithm, FLAGS navigates the 

balance between model performance and training efficiency. Evaluation on CIFAR-10 

demonstrates FLAGS outperforming baselines within designated time budgets. 

1. Introduction 

With the proliferation of Internet of Things (IoT) devices generating vast amounts of data, the 

paradigm of edge computing (EC) [1,2] has emerged as a crucial technology for processing data at 

its source. EC advances with reduced latency for real-time applications (e.g., autonomous driving, 

smart city) compared with traditional in-cloud processing. In EC, the advent of Federated Learning 

(FL) [3] marks a substantial advancement in analyzing and processing distributed data. By 

collaboratively training deep learning models across multiple clients, FL leverages decentralized 

data without compromising privacy. The potential of FL has extended across a multitude of 

applications, including financial services, healthcare informatics, and smart homes [4].  

While innovative in facilitating model training at the network edge, FL faces significant 

challenges, including long synchronization latency during model aggregation and the risk of single-
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point failures. To address these limitations, Hierarchical Federated Learning (HFL), which employs 

edge servers in proximity to edge devices, has been proposed [5]. HFL organizes clients into client 

sets and model aggregation is carried out in two phases: i) edge aggregation, where locally trained 

models from clients are uploaded to the edge server to be aggregated into an intermediate model, 

and ii) global aggregation, where intermediate models are synchronized at the cloud server to 

produce an updated global model at a certain interval. This dual-phase aggregation offers enhanced 

training efficiency as well as broadened access to training samples. 

HFL assumes labeled data is available on edge devices, which, however, is rarely met in 

practical scenarios and labeling data can be both time-consuming and costly. Recognizing this 

challenge, recent research has explored semi-supervised FL (semi-FL) techniques to exploit the 

abundance of unlabeled data on edge devices. For example, Diao etal. [6] applies Mixup technique 

to augment the local dataset on clients and pioneer the alternate training phases widely adopted in 

later literature. Jeong etal. [7] introduce FedMatch, which enforces prediction consistency between 

edge devices for better performance. Concurrently, Zhao etal. [8] achieve state-of-the-art results by 

selectively adopting the teacher model (updated as the moving average of the model under training) 

for pseudo-labeling according to data distribution. Despite the promise shown by these approaches, 

their integration into HFL systems is challenging, as most of them focus primarily on achieving 

state-of-the-art model accuracy but overlooks training efficiency—a key objective of HFL. 

In this paper, we propose a novel semi-supervised HFL (semi-HFL) system, termed FLAGS, 

with adaptive global aggregation interval control. FLAGS performs alternate training between 

labeled data in the cloud and unlabeled data on edge devices, with edge servers facilitating 

hierarchical model aggregation. The crux of the system design lies in determining global 

aggregation intervals, i.e., the number of edge aggregations occurring between two global 

aggregations. On one hand, to provide a solid basis for accurate pseudo labels, smaller global 

aggregation intervals are preferred to aggregate knowledge from all edge devices and refine the 

model over in-cloud labeled data for better performance. On the other hand, larger global 

aggregation intervals amply to the full potential of semi-HFL and contribute to the overall training 

efficiency. Therefore, our work emphasizes on the critical balance between model performance and 

training cost, a fundamental concern in practical HFL systems. Evaluation performance 

demonstrates that FLAGS outperforms existing baselines on the CIFAR-10 dataset by at least 2% 

within given time budgets. 

2. Background  

2.1. Federated Learning 

We consider an Edge Computing (EC) system composed of three tiers: a central cloud server 

with robust computing capabilities, M edge servers, and N edge devices or clients. Clients within 

this system are organized into disjoint sets, with each set associated with an Access Point (AP) that 

includes an edge server. The training dataset, denoted as  comprises  pairs of 

data samples  and their corresponding labels . In HFL, each client possesses a subset of the data, 

, and trains a local model .  

The primary goal of HFL is to obtain an optimal model parameter  that minimizes the 

empirical loss . This objective is mathematically formulated as: 

                                                     (1) 

where  is the loss function based on the local dataset on client i. 
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The HFL process begins with clients conducting initial local training. After a series of local 

iterations within a global training round, each edge server aggregates the outcomes from its client 

set to form an intermediate model. The cloud server then periodically collects these intermediate 

models, amalgamating them into a unified global model, which is subsequently disseminated back 

down the tiers for further refinement. 

2.2. Semi-supervised Hierarchical Federated Learning 

Considering the lack of sufficient expert knowledge or labor on clients, it is usually practical that 

most or even all data on clients are unlabeled while the PS possesses some labeled data annotated 

by domain experts. Thus, it is appealing to develop Semi-supervised HFL (semi-HFL) building 

upon the EC system of HFL, where the complete dataset  consists of labeled dataset  and 

unlabeled dataset , and  is the dataset of client i). The loss 

function over a labeled data sample  and the model parameter  is defined as . Thus, 

considering the supervised training on the labeled dataset , the loss function is . 

To leverage the vast amounts of unlabeled data on clients, recent studies have achieved 

promising results by enforcing model predictions on augmented data that deviate significantly from 

the data distribution. The objective is to ensure the alignment between these predictions with their 

corresponding pseudo-labels. In other words, for a given unlabeled data sample , the model's 

prediction of its weakly-augmented version is represented as a vector , 

where , and M is the number of classes. The pseudo-label for  is then defined as 

, and is retained only if  falls above the pre-defined confidence threshold 

. Let  denote the cross-entropy loss function, the unsupervised training loss with consistency 

regularization can be represented as: 

                                       (2) 

Then the total training objective is expressed as: 

                               (3) 

3. System Design 

3.1. Overview of FLAGS 
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Figure 1: Overview of FLAGS. 

The overview of FLAGS’s training process is shown in Figure 1. The FLAGS training 

methodology unfolds with the primary aim of optimizing model accuracy while minimizing training 

expenses. The process begins with the pretraining of the model on a labeled dataset within the cloud 

server, setting the stage for subsequent operations. Following this initial step, the pretrained model, 
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along with the predefined global aggregation interval P, is distributed to edge servers, and the 

former is further disseminated to a randomly selected subset of clients through the edge server, 

initiating the model training phase. In this phase, the pretrained model undertakes the task of 

generating pseudo labels for the unlabeled data present on the client devices. Equipped with these 

pseudo labels, the clients then engage in training the model for one epoch using both the local data 

and the generated pseudo labels, applying a consistency loss to enhance the training's effectiveness.  

Upon completion of one round, the edge server takes on the role of aggregating the local models 

furnished by the clients to form an intermediate model. This intermediate model is subsequently 

redistributed to the clients, marking the beginning of the next round of local training. At the h-th 

round, the edge server evaluates whether to upload the intermediate model to the cloud for global 

aggregation, a decision contingent upon the condition P mod h = 0. If the condition is met, the 

intermediate model is uploaded. Once in the cloud, a global aggregation of the intermediate models 

received from various edge servers is performed to synthesize a global model. This model then 

undergoes refinement through training on a limited set of labeled data available in the cloud, further 

enhancing its accuracy and reliability. This cyclical process of local and global training iterations, 

punctuated by strategic model aggregations, completes the overall training process of FLAGS. 

3.2. System Control 

Considering diverse cost preferences for various tasks, such as rapid convergence or minimal 

communication costs, we define a weighted function encompassing time and communication costs 

as follows: 

                                                          (4) 

where  and  donate the time and communication cost in round h respectively and  

adjusts the preference between the two costs. Given the intricate factors influencing model training 

in HFL (e.g., models, datasets, and the number of clients and edge server), pre-determining the 

optimal global aggregation interval P is impractical. To navigate this challenge, we introduce a 

multi-armed bandit (MAB) based algorithm for adaptively determining P. This MAB online 

learning algorithm iteratively selects actions (or "arms") from a set, collects rewards based on these 

actions, and refines its action-selection strategy based on the observed rewards across rounds. 

In optimizing P, we treat different values of P as distinct actions. The decision-making process 

entails the MAB agent at the cloud server choosing an action each round, then receiving a reward 

based on the action's outcome. We denote the accuracy of the models  as  at the h-th round, 

which is calculated through a validation set. Then the accuracy change is denoted as . The 

reward of the decision in round h is defined as follows: 

                                                      (5) 

The formulation of the reward function is crucial for the efficacy of MAB algorithms [9]. Our 

reward function is designed with dual objectives: enhancing model performance while minimizing 

training costs. Firstly, when models achieve identical improvements in accuracy (i.e., ), 

those achieved with lower training costs are rewarded more generously. This aligns with our goal of 

achieving substantial accuracy improvements at minimal costs. Secondly, in instances where certain 

actions may lead to a decrease in accuracy (i.e., ), we still employ . However, a 

reduced training cost in such scenarios results in a larger penalty, where the reward is negative. This 

discrepancy is incongruent with our design principle of fostering efficient training. In such 

situations, we designate the reward as . 
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Typically, the true reward of an action in MAB algorithms is estimated by averaging rewards 

across rounds. However, this approach does not suit our context for several reasons. Model 

accuracy improvement rates vary throughout the training process, generally faster in the early stages 

and slowing over time. Additionally, the optimal action may shift as the training progresses due to 

improvements in pseudo-label quality and evolving cost preferences, highlighting the non-

stationary nature of our MAB problem [10]. To address this, we assign greater weight to more 

recent rewards and decrease the weight of older rewards with a decay factor . The 

estimated reward  for action a at the h-th round is then formulated as follows: 

                                         (6) 

where  represent the action chosen at the h-th round. Our algorithm strikes a delicate 

equilibrium between exploration and exploitation to maximize the total rewards received. 

Concretely, exploration investigates various actions to discover potentially superior options, while 

exploitation focuses on leveraging the known best option. To optimize for the exploration-

exploitation trade-off, we employ the Boltzmann exploration strategy [11], which chooses action 

 at the h-th round under the probability as: 

                                                                  (7) 

4. Performance Evaluation 

4.1. Simulation Settings 

To evaluate the performance of FLAGS, we conduct simulations over an EC system consists of 

10 clients, 5 edge servers, and a cloud server. We simulate real-world network conditions with 

fluctuating network bandwidths as [12]. The entire simulation utilizes the PyTorch deep learning 

framework for computational tasks with Python’s socket library. We adopt the widely recognized 

dataset CIFAR-10 [13] consisting of 60,000 32x32 color images, which is split into 50,000 training, 

9,000 testing, and 1,000 validation images. In our setting, 4,000 out of 50,000 images served as the 

labeled data in-cloud, and the rest distributed uniformly over clients. For performance evaluation, 

we train the AlexNet model [14] for 600 rounds (each contains 2 local epochs), coupled with the 

Stochastic Gradient Descent (SGD) optimizer for parameter updates. 

4.2. Simulation Results 

 

Figure 2: Training Process of FLAGS and baselines on CIFAR-10. 
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We conduct experiments on CIFAR-10 dataset to evaluate the effectiveness of FLAGS in 

comparison to baseline models (specifically, semi-HFL with a fixed aggregation interval P). The 

training progress of these methods is visually depicted in Figure 2. Remarkably, within given time 

constraints, FLAGS stands out with the fastest convergence rate, surpassing the performance of 

other models across all three datasets. For instance, under a time budget of 600 minutes, FLAGS 

achieves an impressive 87.8% accuracy for AlexNet on CIFAR-10. In contrast, semi-HFL with a 

short aggregation interval, such as P=2, converges quickly but only attains 85.8% accuracy due to 

substantial time spent on synchronization in the cloud. Conversely, with a longer aggregation 

interval like P=5, semi-HFL converges poorly, achieving only 75.3% accuracy. These results 

highlight the superior efficiency of FLAGS in achieving robust convergence and high accuracy. 

5. Conclusions 

In this paper, we present a novel semi-supervised Hierarchical Federated Learning (semi-HFL) 

system, termed FLAGS, to explore training models over unlabeled data on edge devices. Based on 

our analysis of the impact of global aggregation intervals on model performance and training 

efficiency, we develop a MAB-based algorithm for adaptively determining global aggregation 

intervals. The experimental results showed that FLAGS outperforms existing baselines by at least 

2% on the CIFAR-10 dataset within given time budgets. 
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