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Abstract: In the field of ecological conservation, accurately extracting vegetation areas in 

UAV images is a critical task. This study aims to accurately identify vegetation from high-

resolution riverine zone UAV images. Facing the challenges of complex factors such as 

light variations and water ripples, a deep learning technique, which combines 

Convolutional Neural Networks and Vision Transformer, is used in this study, which 

proposes a semantic segmentation network structure based on an encoder-decoder. We 

innovatively introduce the Explicit Visual Center mechanism (EVC) and CSWin 

Transformer structure to optimize image feature capture, especially in dealing with the 

classification challenges caused by the similarity between vegetation and water ripples. The 

experimental results show that the proposed network has the best results compared with the 

classical network models such as U-Net, PSP-Net, DeepLabv3+, etc., and the mIOU phase 

of U-Net, which is the highest among the three networks, is 1.3 percentage points higher. In 

this paper, an effective scheme is proposed for vegetation extraction from UAV images in 

the riparian zone. 

1. Introduction 

The vegetation coverage condition of the riparian zone is a key indicator for assessing the health 

of ecosystems, and accurately extracting vegetation information from drone aerial images is crucial 

for ecological protection. However, the interlaced water and land environment, along with factors 

such as light refraction, make it difficult for traditional methods to distinguish between vegetation 

and water bodies. Therefore, exploring an effective method for extracting vegetation from riparian 

zone images is of great importance. Deep learning has shown significant effectiveness in the field of 

image semantic segmentation, especially in extracting vegetation information from complex 

backgrounds. This is due to its excellent ability to learn features, allowing deep learning models to 

adapt to different interference factors, effectively recognizing and segmenting vegetation. 

CSWin Transformer [1], designed for visual tasks, is an advancement over the SWin 

Transformer[2]. It addresses the computational efficiency issues of vision Transformer[3] in 

processing high-resolution images. By introducing an innovative Cross-Shaped Window self-

attention mechanism, it reduces computational costs while expanding the model's receptive field, 
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effectively enhancing the processing capability for pixel-level tasks. 

Compared to Swin Transformer, Patch Merging is replaced with a convolution of 3 × 3 steps of 2. 

This strategy is similar to the design of downsampling in traditional CNN architectures, which 

further improves the efficiency and performance of the model.The design of the CSWinBlock 

allows the model to not only emphasize the local location information when dealing with features 

within a small window, but also to flexibly adapt to inputs of different sizes and shapes. This 

layered design strategy enables CSWin Transformer to efficiently extract features from shallow to 

deep layers and provide rich semantic information for a variety of visual tasks such as image 

classification, target detection and semantic segmentation.  

This study aims to explore a network structure suitable for extracting vegetation from high-

resolution riparian zone drone images using deep learning semantic segmentation network methods. 

The goal is to address the issue of difficult-to-recognize water ripples in riparian zone images, 

thereby improving the accuracy of vegetation segmentation.  

2. Materials & Methods 

In the CSWin Transformer, images are first downsampled through a convolutional layer and 

mapped to a higher dimensional space, similar to the initial processing method of the Swin 

Transformer. Subsequently, the model processes through several stages, each including multiple 

CSWin Transformer Blocks. These stages utilize Local Enhanced Positional Encoding (LePE) to 

highlight the importance of local positional information, while Multilayer Perceptrons (MLP) [4]are 

used for feature extraction and transformation.The encoder part consists of four stages, each of 

which does extraction and refinement of features. In the initial stage, the input image is 

downsampled through a convolutional layer and then transformed into a series of non-overlapping 

image blocks (patches) which are further mapped to a high-dimensional feature space through a 

linear layer. 

Subsequently, the feature map enters the core of the CSWin Transformer, which consists of 

multiple CSWin Transformer blocks, each of which contains the Cross Shape Window's self-

attention (CSWin self-attention) mechanism. In this mechanism, self-attention is computed within a 

window of bars in the vertical and horizontal directions, respectively, which not only reduces the 

complexity of self-attention, but is allowed to capture details and contextual information in both 

directions. As the network hierarchy deepens, these bar windows are progressively merged and 

narrowed, allowing information to flow over a larger area, resulting in a hierarchical feature 

representation.Inside the CSWin Transformer block, the detailed features are further processed and 

refined to improve the sensitivity to the location information without increasing the computational 

cost through the Local Enhancement of Position Awareness (LePE) attentional mechanism. In 

addition, a Merge Block is used at the end of each stage, which downsamples and dimensionally 

increases the feature map through a convolution operation to prepare for the next stage of feature 

extraction. 

The entire encoder structure is able to gradually construct feature representations from coarse to 

fine by the above staged processing, which provides rich semantic information for the subsequent 

decoder.CSWin Transformer, while maintaining high efficiency, improves the model's ability to 

adapt to features at different scales through its cross shape window design, which is crucial for 

accurate pixel-level prediction tasks. 

Facing the challenges of complex environmental factors in high-resolution drone images of 

riparian zones, especially the issue of misclassification caused by the similarity between water 

ripples and vegetation textures, this network design optimizes through the collaborative work of the 

EVC[5] module and the decoder. The global and local feature fusion capability of the EVC module 
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helps the model capture more detailed vegetation features. Meanwhile, the decoder ensures the flow 

of information from the encoder to the decoder through skip connections and gradual upsampling, 

preserving key vegetation information and effectively reconstructing the spatial distribution of 

vegetation. In summary, the lightweight MLP structure achieves effective capture of global 

information while maintaining high efficiency by combining the properties of deep convolution and 

MLP, while LVC effectively encodes and processes the input features to provide richer information 

and context for subsequent model processing and inference. 

This paper presents a network structure based on CSWin Transformer and EVC, aimed at 

achieving high-precision vegetation segmentation. The CSWin Transformer structure optimizes the 

capture of vegetation image features by combining an encoder-decoder structure with self-attention 

mechanisms, while the EVC module aggregates global information and local details to enhance the 

model's ability to recognize complex vegetation areas, making it more accurate in processing high-

resolution riparian zone images. The decoder part draws on the architecture of UNet[6] to achieve 

gradual upsampling of feature maps, starting with bilinear upsampling to enlarge the feature maps, 

which are then concatenated with feature maps output from skip connections of the encoder. 

Subsequently, the concatenated feature maps are processed through two convolutional layers. This 

process of upsampling and feature fusion is carried out step by step, compensating for the loss of 

vegetation detail and edge features caused by downsampling and enhancing feature richness. 

Finally, the network uses a convolutional layer to convert the final feature map into prediction 

results. The output channels of this convolutional layer equal the number of target classes for 

classification, thereby achieving classification prediction for each pixel. The network structure is 

shown in Figure 1. 

 

Figure 1: Network infrastructure 

3. Dataset & Evaluation metrics 

The publicly available datasets show significant differences in environment and resolution 

compared to the drone aerial visible light images of riparian zones used in this study. Therefore, for 

the collected riparian drone images, vegetation distribution images for training labels were obtained 

59



using the watershed algorithm [7] combined with the vegetation index[8] extraction method. 

However, this approach does not capture labels for images with high-intensity water ripples. 

Therefore, the Labelme tool was used to precisely annotate the water bodies in these images, 

generating binary images of water and non-water as supplementary labels. After organization, we 

obtained a total of 1330 data samples, which were randomly divided into a training dataset and a 

validation dataset at a ratio of 8:2. 

The performance evaluation metrics used in the experiments include mean intersection over 

union (mIoU), mean pixel accuracy (mPA), and overall accuracy (Accuracy). mIoU, as a standard 

evaluation metric in the field of semantic segmentation, is selected as the main evaluation metric in 

this paper. 

4. Results 

To demonstrate the effectiveness of the network proposed in this chapter, a comparison of 

riparian zone vegetation extraction was conducted between several existing semantic segmentation 

networks (including DeepLabV3+, PSPNet, UNet) and our network. The specific results are shown 

in Table 1. 

According to Table 1, several different network models worked well in the extraction of the 

vegetation dataset we constructed for the riparian zone, with accuracies above 0.9. However, in 

general, our network model outperformed several other networks in terms of mIoU, mPA and 

Accuracy. 

Table 1: Comparison with other network models 

network  # params mIoU /% mPA /% Accuracy /% 

Ours(CSwin-T) 31M 97.33 98.65 98.64 

DeepLabV3+ 59M 95.47 97.69 97.69 

UNet 25M 96.08 98.01 98.00 

PSPNet 24M 94.61 97.24 97.23 

As can be seen in Table 1, the two metrics mPA and Accuracy are very close to each other, 

which is mainly attributed to the dataset characteristics. In our vegetation extraction task, the 

images in the dataset were cropped from the high-resolution vegetation extraction result images to a 

size of 512 × 512, resulting in a very uniform spatial distribution of most of the samples, i.e., either 

exclusively vegetated pixels or exclusively non-vegetated pixels. This consistency in spatial 

distribution, coupled with the roughly balanced distribution of vegetation and non-vegetation 

samples across the entire dataset, motivates the model to exhibit consistent predictive performance 

for both categories. As a result, the values of mPA and Accuracy even appear to be identical after 

retaining to two decimal places. This also reflects the model's ability to predict both vegetation and 

non-vegetation categories uniformly and effectively when dealing with the relatively simple task of 

binary classification of vegetation images. 

To validate the effectiveness of the CSWin Transformer as the encoder backbone network, we 

conducted ablation experiments, comparing it with structures such as Resnet50[9], 

Biformer_tiny[10], Davit_tiny[11], and Efficientformer[12]. Additionally, the CSWin Transformer 

is divided into different variants according to scale parameters, with CSwin-T, CSwin-S, CSwin-B, 

and CSwin-L representing the tiny, small, standard, and large versions, respectively. Ablation 

experiments were also performed for these four variants, with results shown in Table 2. 

After comparison, we find that the evaluation index of the model improves accordingly as the 

number of parameters increases from CSwin-T to CSwin-B variants. However, despite having the 

largest number of parameters, the CSwin-L variant does not optimize its performance, but rather 
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performs worse than CSwin-T. This may be caused by overfitting, i.e., a large model that 

overperforms on the training set and underperforms on the validation set, especially more 

pronounced when the amount of data is small. In addition, if the task or data complexity does not 

require a large model, the performance improvement of the larger variant is limited. However, the 

evaluation metrics of the CSwin structure have significant advantages over other non-CSwin 

encoder structures. 

Table 2: Comparison of evaluation metrics for encoder backbone networks 

network  #params mIoU /% mPA /% Accuracy /% 

Resnet50 44M 97.07 98.52 98.50 

Biformer_tiny 22M 97.13 98.55 98.53 

Davit_tiny 39M 96.69 98.32 98.31 

Efficientformer 19M 96.55 98.26 98.24 

Ours(CSwin-T) 31M 97.33 98.65 98.64 

Ours(CSwin-S) 43M 97.42 98.70 98.70 

Ours(CSwin-B) 88M 97.48 98.73 98.72 

Ours(CSwin-L) 186M 97.14 98.55 98.54 

5. Conclusion 

To address the difficulty of distinguishing between vegetation and water bodies in drone aerial 

images of riparian zones, we constructed a semantic segmentation neural network based on an 

encoder-decoder structure. In the encoder, the CSWin Transformer structure was selected as the 

main feature extraction network, and the EVC module was introduced in the decoder for feature 

fusion. Additionally, we conducted model testing and ablation experiments to verify that our 

method achieves reliable accuracy in extracting vegetation from riparian zones. 

Future research could focus on introducing and developing more advanced image preprocessing 

and enhancement techniques, especially when dealing with complex environmental factors such as 

light variations, shadows and reflections. This will help to improve the performance of the 

algorithm for vegetation extraction under various environmental conditions. Consider combining 

different types of remote sensing data, such as hyperspectral, infrared, and radar data, to enhance 

the generalization capability of the model. Multi-source data fusion can provide more 

comprehensive information and help improve the accuracy of vegetation classification and 

identification. Through in-depth research and exploration in these directions, future work will not 

only improve the accuracy and efficiency of vegetation distribution detection in the riparian zone, 

but also further expand the prospects for its application in a wider range of fields such as ecological 

monitoring and environmental protection. 
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