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Abstract: Change detection plays a crucial role in identifying differences between multi-

temporal images captured over the same geographical area, with applications spanning 

various fields including urban planning, environmental monitoring, and disaster assessment. 

However, challenges persist in handling bitemporal images with viewpoint difference, 

affecting the performance of traditional change detection models. To address these 

challenges, this paper proposes a novel end-to-end optical flow alignment change detection 

(PFCD) model. The PFCD model integrates optical flow estimation technology, enabling 

direct change detection in images with viewpoint differences without the need for a 

separate image registration model. Through end-to-end training, the model achieves higher 

detection accuracy and faster processing speeds. Experimental results on the scattered 

garbage regions change detection dataset (SGRCD-VD) and the building change detection 

dataset (WHUCD-VD) validate the effectiveness of the model. On the SGRCD-VD test set, 

the PFCD model achieves an F1 score of 91.00%, while on the WHUCD-VD test set, it 

reaches 94.82%, demonstrating excellent performance in handling images with viewpoint 

differences. Additionally, the model exhibits advantages in processing speed and model 

parameter. 

1. Introduction 

Change detection aims to identify differences between multi-temporal images captured over the 

same geographical area. Its applications span various domains including urban planning, 

environmental monitoring, disaster assessment, and more. Over the past few decades, with the 

development of deep learning technologies, change detection has witnessed rapid progress, leading 

to the emergence of numerous change detection methods. However, despite the rapid advancement 

in change detection techniques, detecting changes in images with viewpoint differences remains a 

significant challenge for most change detection models. 

When acquiring bitemporal images using devices such as small unmanned aerial vehicles 

(UAVs), vehicle-mounted cameras, or remote sensing satellites, differences in trajectory, camera 

viewpoint, device orientation, and complex geographical environments inevitably lead to viewpoint 

difference in the acquired bitemporal images. Traditionally, the impact of viewpoint differences has 

been overlooked, and many existing change detection networks have been designed without 

considering the viewpoint disparities between bitemporal images. This is because image registration 
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models are typically employed to eliminate such disparities before performing change detection. 

However, this approach suffers from issues such as low detection accuracy and slow processing 

speed. Errors introduced during the process of image registration can propagate to the process of 

change detection, resulting in greater errors and worse performance. Moreover, both image 

registration and change detection models require feature extraction from images, resulting in slow 

processing speeds and making them unsuitable for applications requiring high-speed processing. 

To address these issues, this paper proposes a new change detection network, PFCD. The model 

integrates optical flow estimation, enabling direct detection of changes in images with viewpoint 

differences without the need for separate image registration models. Through end-to-end training, 

the model achieves higher detection accuracy. By directly aligning pairs of feature maps where 

there is a difference in viewing angle, redundant feature extraction in the image is avoided, thus 

increasing the processing speed. 

2. Related Work 

This section elaborates on the rationale behind our proposed change detection method and the 

relevant work. 

Change detection: Over the past few decades, a plethora of change detection methods have 

emerged. However, many of these methods failed to initially consider the impact of viewpoint 

differences in bitemporal images on change detection performance. For example, Fang et al.[1] 

introduced SNUNet, a densely connected siamese network for change detection. SNUNet addresses 

the issue of deep localization information loss by concatenating multi-level features. Similarly, 

Chen et al.[2] proposed BitCD, a bitemporal image transformer change detection network for 

remote sensing images. BitCD enhances context information of image features through a 

transformer and derives the change map from feature differences. 

However, some methods that did consider viewpoint differences during design exhibited poor 

performance when handling images with significant viewpoint disparities. For instance, Sakurada et 

al.[3] presented a novel model for weakly supervised semantic scene change detection, which 

addresses camera viewpoint differences in vehicular images using correlation layers. Nevertheless, 

due to the lack of effective supervision for correcting viewpoint differences during network training, 

the performance of this network diminishes in bitemporal images with substantial viewpoint 

disparities. 

Optical flow estimation: Optical Flow refers to the movement of light. It describes the motion of 

each pixel in an image and can be represented as a vector field, where each vector indicates the 

direction and speed of motion for the corresponding pixel. Pixel A is located at position (xt, yt) at 

time t, and it moves to position (x(t+1), y(t+1)) at time t+1. The motion vector of pixel A, (dx, dy) = 

(x(t+1), y(t+1)) - (xt, yt), represents the optical flow of pixel A.  

In recent years, there has been rapid development in the field of optical flow estimation, driven 

by the advancement of convolutional neural networks (CNNs). Dosovitskiy et al.[4] were pioneers 

in this area, introducing CNNs to optical flow estimation and proposing two network structures 

named FlowNetSimple and FlowNetCorr. Ilg et al.[5] further advanced the field with FlowNet2, a 

model composed of multiple stacked instances of FlowNetSimple and FlowNetCorr. Additionally, 

Ranjan and Black[6] introduced SpyNet, which combines classical spatial-pyramid formulations 

with deep learning techniques for optical flow estimation. Subsequently, notable contributions have 

been made with networks like PWCnet[7] and LiteFlowNet[8]. These networks utilize correlation 

layers to estimate optical flow at each level of the feature pyramid and subsequently warp the 

features of each level based on the estimated optical flow, resulting in more compact and efficient 

networks. 
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3. Methodology 

To address the challenges of poor performance and slow processing speed in change detection 

models when handling images with viewpoint disparities, we propose an optical flow alignment 

model called PFCD. The PFCD model, depicted in Figure 1, comprises three modules: the feature 

extraction module, the optical flow alignment module, and the change detection module. In the 

feature extraction module, we employ the ResNet[9] network as the backbone to extract feature 

maps of varying sizes, depths, and semantic information from the bitemporal images. The optical 

flow alignment module is responsible for aligning feature maps with viewpoint disparities to 

eliminate the existing differences. Subsequently, the change detection module detects changes in 

target objects from the aligned feature maps, ultimately generating feature difference maps. In this 

section, we will provide a detailed description of our proposed method and the training strategy. 

 

Figure 1: Details of PFCD network structure. 

3.1. Feature Extraction Module 

ResNet18[9] is composed of 18 convolutional layers and introduces a novel concept of residual 

connections, leading to remarkable performance across various tasks. Therefore, we opt to utilize 

ResNet18 as the backbone network for feature extraction in our model. Through the ResNet18[9] 

model, the feature extraction module conducts four 2x downsampling operations on the input image. 

The resulting feature maps after each downsampling step are utilized for subsequent module 

operations. This downsampling process effectively reduces the resolution of the feature maps, 

thereby decreasing the time required for the feature map alignment by the optical flow alignment 

module. Additionally, the feature maps of different sizes and depths encompass both rich semantic 

information from deeper layers and accurate positional information from shallower layers. This 

combination contributes significantly to enhancing the accuracy of the change detection task. 

3.2. Optical Flow Alignment Module 

The optical flow alignment module plays a pivotal role in overcoming the challenges faced by 

change detection models when processing images with viewpoint differences. The optical flow 

alignment module consists of global and local correlations, an optical flow estimator, and a warping 
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layer. Its primary function is to align image feature maps, which is crucial for improving the 

accuracy and efficiency of change detection tasks. 

To accomplish this, the module employs a multi-step process. Initially, it establishes dense 

correspondences between pairs of image feature maps by computing either local or global 

correlations. These correlations provide valuable information about the relationships between pixels, 

enabling the model to estimate optical flow more accurately. 

The optical flow estimation process involves using the optical flow estimator composed of 

multiple layers of convolutional operations. This estimator analyzes the correlations obtained from 

the previous step to infer the displacement of pixels between the two images. By leveraging 

advanced convolution techniques, it effectively captures the intricate patterns and motion 

information present in the image data. 

Once the optical flow is estimated, the next step involves applying a warping layer. This layer 

deforms the feature map of one image to align it with the corresponding feature map of the other 

image. Through this deformation process, the module ensures that features representing the same 

spatial locations in both images are brought into alignment, facilitating accurate comparison and 

analysis. 

Overall, the optical flow alignment module integrates advanced techniques in dense 

correspondence establishment, optical flow estimation, and feature map alignment to effectively 

address the challenges posed by viewpoint differences in change detection tasks. Its robust 

functionality enhances the model's ability to detect and analyze changes in diverse environmental 

conditions, making it a valuable component in change detection systems. 

3.3. Change Detection Module 

The change detection module comprises multiple layers of convolution. Within this module, the 

feature map of image A is subtracted from that of image B, and the absolute value of the result is 

taken. Next, the small-sized feature difference map is upsampled by a factor of 2 and fused with the 

absolute value result. Then, the feature difference map undergoes processing through multiple 

layers of convolution. Finally, the feature difference map is further processed using two additional 

convolutional layers to generate the change map. 

3.4. Loss Function 

To improve the performance of the model in detecting image changes with viewpoint differences, 

we adopted a deep supervision strategy, which involves supervising the intermediate results of the 

model to enhance training effectiveness. In the optical flow alignment module, we supervised the 

optical flow generated from feature maps of different sizes using endpoint error loss, and then 

combined them proportionally. In the change detection module, we supervised the change map 

generated by the classifier from feature difference maps of different sizes using binary cross-

entropy loss, and then combined them proportionally. Finally, we summed up the supervised losses 

in the optical flow alignment module and the change detection module as the loss function for 

model training. 

4. Experiments 

4.1. Datasets 

The scattered garbage regions change detection dataset (SGRCD-VD) and the building change 

detection dataset (WHUCD-VD) with viewpoint differences are utilized for model validation in this 
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study. Each dataset comprises 50,000 samples of size 256  256  3. The datasets are split into 

training, testing, and validation sets in a ratio of 70%, 15%, and 15%, respectively. 

4.2. Implement details 

The model is implemented using the PyTorch 1.8 framework and optimized with the Adam 

optimizer. Training is conducted on an NVIDIA GeForce RTX 3090 for 100 epochs. The model is 

evaluated after each training epoch, and the best-performing model on the validation set is selected 

to evaluate the test set. In model evaluation, F1-score will be used as the primary evaluation metric, 

while overall accuracy (OA), intersection over union (IoU), precision (P), and recall (R) will serve 

as auxiliary evaluation metrics. 

4.3. Results on SGRCD-VD and WHUCD-VD 

From Table 1, it can be observed that the proposed PFCD model performs well on the SGRCD-

VD and WHUCD-VD datasets. Specifically, on the SGRCD-VD test set, PFCD achieves an F1 

score of 91.00%, while on the WHUCD-VD test set, PFCD achieves an F1 score of 94.82%. This 

demonstrates that the proposed PFCD model can effectively handle images with viewpoint 

differences and excels in both processing speed and model parameters. Notably, the model 

parameters are only 12.56M, while the image processing speed reaches 84.34 FPS. 

Table 1: Results on SGRCD-VD and WHUCD-VD. All scores are expressed as percentages (%). 

 F1 OA IoU P R 

SGRCD-VD 91.00 99.61 84.67 90.95 91.05 

WHUCD-VD 94.82 99.27 90.54 95.67 93.99 

From Figure 2, it can be seen that there is a significant viewpoint difference between the dual-

temporal images, both in the SGRCD-VD and WHUCD-VD datasets. However, this does not affect 

the PFCD model, which can accurately detect changes occurring in images with viewpoint 

differences.  

 
(a) SGRCD-VD                                                     (b) WHUCD-VD 

Figure 2: Examples of predicted results. From left to right: image A, image B, ground truth, and 

OFACD. To enhance representation, we employ different colours: white for True Positives (TP), 

black for True Negatives (TN), red for False Positives (FP), and green for False Negatives (FN). 

5. Conclusion 

This paper proposes an end-to-end optical flow alignment change detection model, which can 

directly detect target changes in images with viewpoint differences. By introducing the optical flow 

module, the model addresses the issues of low detection accuracy and slow processing speed 

encountered by conventional change detection models when dealing with images with viewpoint 
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differences. Finally, experiments on the SGRCD-VD and WHUCD-VD datasets with viewpoint 

differences demonstrate the suitability of PFCD for change detection tasks in images with 

viewpoint differences, with advantages such as low parameter count and high throughput. 

References   

[1] Fang S, Li K, Shao J, et al. SNUNet-CD: A densely connected Siamese network for change detection of VHR images 

[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. 

[2] Chen H, Qi Z, Shi Z. Remote sensing image change detection with transformers [J]. IEEE Transactions on 

Geoscience and Remote Sensing, 2021, 60: 1-14.  

[3] Sakurada K, Shibuya M, Wang W. Weakly supervised silhouette-based semantic scene change detection[C]//2020 

IEEE International conference on robotics and automation (ICRA). IEEE, 2020: 6861-6867. 

[4] Dosovitskiy A, Fischer P, Ilg E, et al. Flownet: Learning optical flow with convolutional networks[C]//Proceedings 

of the IEEE international conference on computer vision. 2015: 2758-2766. 

[5] Ilg E, Mayer N, Saikia T, et al. Flownet 2.0: Evolution of optical flow estimation with deep networks[C]// 

Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2462-2470. 

[6] Ranjan A, Black M J. Optical flow estimation using a spatial pyramid network[C]//Proceedings of the IEEE 

conference on computer vision and pattern recognition. 2017: 4161-4170. 

[7] Sun D, Yang X, Liu M Y, et al. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume[C]// 

Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 8934-8943. 

[8] Hui T W, Tang X, Change Loy C L. A lightweight convolutional neural network for optical flow estimation[C]// 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition .2018: 8981-8989. 

[9] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference 

on computer vision and pattern recognition. 2016: 770-778.  

 

74




