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Abstract: This invention pertains to the field of reinforcement learning and discloses a multi-

level feedback queue optimization method [2] based on reinforcement learning and dynamic 

time slot scheduling. It involves separately obtaining process feature data, system load data, 

user experience data, and hardware-related data. The acquired data is preprocessed to ensure 

accuracy and reliability. Based on the preprocessed data, the data sets for process features, 

system load, user experience, and hardware-related are formed through numbering. Using 

these numbered datasets, the process feature index, system load rate, user experience index, 

and hardware load rate are calculated. A comprehensive evaluation of queue priority values 

is conducted, and multi-level feedback queue optimization is implemented based on these 

evaluated queue priority values. This approach considers multiple dimensions of scheduling 

methods, enhancing the quality and accuracy of scheduling decisions, avoiding certain 

processes from occupying too many resources and affecting the operation of other processes, 

making multi-level feedback queue optimization more equitable. 

1. Background Introduction 

The Multi-levelFeedbackQueue (MFQ) scheduling algorithm is an efficient method used for task 

scheduling in operating systems, aiming to optimize CPU usage and system response time. In 

computer systems, the allocation of processor resources is one of the key issues in operating system 

design. Traditional scheduling algorithms such as First-Come-First-Served (FCFS), Shortest Job First 

(SJF), Priority Scheduling, and Round Robin (RR) each have their advantages and disadvantages, 

failing to fully meet the demands of modern complex computing environments. With the rapid 

increase in servers and tasks, and the growing complexity of resource scheduling methods, there is a 

need for a scheduling strategy that can adapt to various types of processes and optimize system 

performance. The MultilevelFeedbackQueue (MFQ) scheduling algorithm has emerged to address 

these needs. It combines the benefits of Round Robin and Priority Scheduling, dynamically adjusting 

the priority of tasks in different queues to achieve efficient management and utilization of system 

resources. 

The existing multi-level feedback queue scheduling algorithms primarily focus on the allocation 
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and scheduling of CPU resources, with relatively less consideration given to other system resources 

such as memory and I/O devices. However, in actual systems, the demand for resources like memory 

by processes also impacts system performance. Currently, multi-level feedback queue scheduling 

does not adequately incorporate the usage of memory and other resources into its decision-making 

process, which may result in some processes failing to run properly, affecting overall resource 

utilization. Additionally, it lacks a certain degree of fairness. 

In response to the shortcomings of existing technologies, this paper presents a multi-level feedback 

queue optimization method based on reinforcement learning and dynamic time slot scheduling. This 

approach comprehensively considers multiple dimensions in scheduling, which helps improve the 

quality and accuracy of scheduling decisions, reduce resource waste and conflicts, and achieve more 

balanced resource allocation. It prevents certain processes from consuming too many resources and 

affecting the operation of other processes, ensuring that high-priority or high-user experience index 

processes receive better service. Consequently, it enhances overall service quality and makes multi-

level feedback queue optimization more equitable. 

2. Introduce reinforcement learning strategy in multi-level feedback queue 

This invention addresses the shortcomings of existing technologies and proposes a multi-level 

feedback queue scheduling method that combines reinforcement learning with dynamic time slot 

adjustment. This method optimizes scheduling decisions by introducing a deep Q network (DQN) 

and identifies whether the system's process tasks are primarily CPU-intensive or I/O-intensive to 

dynamically adjust the time slot sizes of each queue. Through simulation comparisons, it can 

significantly reduce frequent context switches, adapt well to task loads, and enhance system 

throughput, thereby significantly improving system efficiency. This method can help optimize 

process scheduling algorithms in actual operating system development, enabling the system to 

achieve higher throughput, which is of great significance for the development of process scheduling 

in operating systems. 

First, we need to establish a basic multi-level feedback mechanism, allowing the system to set 

multiple priority queues for tasks and initialize different time slice lengths for each queue: high-

priority queues have shorter time slices; low-priority queues have longer time slices, with subsequent 

queue time slice lengths remaining constant; when a new task arrives, it is initially placed in the 

highest priority queue; if the task is not completed within the current queue's time slice, it will be 

moved to the next lower priority queue; high-priority tasks preempt the execution resources of low-

priority tasks; if tasks in low-priority queues remain un-scheduled for an extended period, the priority 

of all processes can be increased through an aging (Aging) mechanism to prevent "hunger" issues. 

We set the observation state space as the 𝑠𝑎queue length and the action space as the selection of 

the execution queue. 

We use the DQN model to select the best queue according to the queue length 𝜀state. The training 

adopts the experience recovery and-greedy strategy, and the Q value update formula is: 

 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max(𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)]         (1) 

Among them, is the 𝑠𝑎𝑟 𝛾𝛼current state, is the action, is the immediate reward, is the discount 

factor, and is the learning rate. 

This formula is the core of the learning algorithm𝑄(𝑆, 𝑎)𝑄𝑄(𝑠, 𝑎)𝑄𝑄(𝑠, 𝑎), which is used to 

update the state-action pair and the value of the state-action pair. The value represents the long-term 

expected return of taking action a under state s. Through continuous iterative update, it gradually 

approaches the optimal value, so as to guide the scheduler to choose the best action. 

The training optimization DQN mechanism is defined as follows: rewards are allocated according 
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to the execution results of tasks, with +1 for completed tasks, -0.1 for unfinished tasks, and-1 for 

empty queue selection. The total reward is calculated as follows: 

 𝑅 =  ∑(𝑟𝑒𝑤𝑎𝑟𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  +  𝑟𝑒𝑤𝑎𝑟𝑑𝑖𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 + 𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑚𝑝𝑡𝑦)            (2) 

The R value obtained by this formula is used to train and optimize the DQN strategy. 

This total reward R is used as the goal of the deep Q network 𝑄𝑅(DQN) to drive the learning 

algorithm to optimize the decision. DQN learns to select the best queue by maximizing the expected 

value, so as to improve the system throughput. 

Next, we need to set the context switching penalty: when an unfinished task is downgraded to the 

next queue or returned to the original queue, the switching penalty time is increased, 𝐶 =  𝑘  ⋅
 𝑠𝑤𝑖𝑡𝑐ℎ𝑐𝑜𝑢𝑛𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑐𝑜𝑢𝑛𝑡which is denoted as: where k is the word switching penalty value and is the 

number of times the context is switched. 

The formula explains that after a task is taken from the selected queue, the execution time is the 

smaller value of the remaining time and the time slice. Completing the task rewards +1; failing to 

complete it results in a queue demotion and a penalty of-0.1, with an empty queue receiving a penalty 

of-1. The DQN dynamically decides which queue to execute based on the current queue status (the 

number of tasks in each queue), rather than strictly following the priority order of queue numbers. 

This is the first optimization point discussed in this paper. 

3. Introduce dynamic time slice adjustment strategy in multi-level feedback queue 

Due to the traditional multi-machine feedback queue scheduling where the time slice length [5] 

for each queue is fixed, in actual high-load scenarios, segment tasks may experience increased waiting 

times due to overly long time slices (even the shortest ones), while long tasks may be frequently 

interrupted due to overly short time slices (even the longest time slice in multi-level feedback queues). 

Therefore, we differ from the traditional principle of fixing the time slice lengths for each queue after 

initialization. Instead, we dynamically adjust the time slice lengths based on the type of background 

task and the required time slice length during actual execution, thereby improving scheduling 

efficiency! 

After every 10 rounds of training in DQN, we adjust the time slice according to the proportion of 

𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑟𝑎𝑑𝑖𝑜process task time slice exhaustion: 

If so, it is determined to be CPU-intensive and the time slice is doubled:𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑟𝑎𝑑𝑖𝑜 <
 𝑙𝑜𝑤𝑙𝑒𝑣𝑒𝑙𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛

 

𝑇′  =  [2𝑡0, 2𝑡1 … ,2𝑡𝑛−1]                            (3) 

This means that the vast majority of task processes are CPU-intensive, so the time slice length of 

each queue is doubled from the original to reduce frequent context switching. 

If so, it is determined to be I/O intensive and the time slice is doubled:𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑟𝑎𝑑𝑖𝑜 <
 𝑙𝑜𝑤𝑙𝑒𝑣𝑒𝑙𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛

 

𝑇′  =  [max (1, 𝑡0/2), max (1, 𝑡1/2), … , 𝑚𝑎𝑥(1, 𝑡𝑛−1}/2)]                            (4) 

This means that most of the task processes are I/O intensive, so the time slice length of each queue 

is halved from the original. 

4. Specific implementation methods 

As mentioned above, we provide a multi-level feedback queue scheduling method combining 

reinforcement learning [1,2] and dynamic time slot adjustment, which can reduce the overhead of 
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redundant context switching compared with traditional multi-level feedback queue, improve 

throughput, and adapt to high load in actual situations. [3,4] 

As shown in Figure 1, the overall model structure of this invention includes the (running queue 

structure), (priority array (scheduling entity) and (task structure) required by the traditional multi-

level feedback 𝑠𝑡𝑟𝑢𝑐𝑟𝑞𝑠𝑡𝑟𝑢𝑐𝑡𝑟𝑡𝑝𝑟𝑖𝑜𝑎𝑟𝑟𝑎𝑦
, 𝑠𝑡𝑟𝑢𝑐𝑡 𝑠𝑐ℎ𝑒𝑑_𝑟𝑡_𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑟𝑢𝑐𝑡 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 queue, as 

well as the DQN module and dynamic time slice adjustment module unique to this patent, in order to 

improve the load and throughput. 

 

Figure 1: Overall structure of the model of the invention 

First, construct the basic multi-level feedback queue mechanism as shown in Figure 1. The system 

sets multiple priority queues for tasks, each with different time slice lengths; when a new task arrives, 

it is initially placed in the highest priority queue; if the task is not completed within the current time 

slice, it will be moved to the next lower priority queue; high-priority tasks preempt the execution 

resources of low-priority tasks; if a task in a low-priority queue remains un-scheduled for an extended 

period, its priority can be increased through the aging (Aging) mechanism to prevent starvation issues. 

On the basis of the original structure, new member variables are added 

𝑠𝑡𝑟𝑢𝑐𝑡 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑎𝑟𝑟𝑎𝑦𝑄𝑖 to calculate the queue score, which is used as the basis for subsequent 

dynamic priority adjustment of the queue. 

The deep network 𝑄(DQN) is implemented to dynamically select the execution queue according 

to the queue state, so that the queue priority is no longer fixed. 

 

Figure 2: Internal structure of DQN 
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Specifically, as shown in Figure 2, the internal structure of DQN, we use the defined total reward 

𝑄𝑅function (Formula 2) as the value basis, and the larger the value, the higher the score. 

Among them, DQN is used to update the Q value Q(s, a) of the state-action pair (S, a). The Q value 

represents the long-term expected return of taking action a under the state s. Through continuous 

iterative update, Q(s, a) gradually approaches the optimal value, so as to guide the scheduler to choose 

the best action. 

We used ReLU as the loss function, and Figure 3 shows the internal parameter network of DQN: 

both the input layer and output layer consist of queue Q values. The middle part includes two hidden 

layers with a total of 64 parameters (it should be noted that in practice, the parameter values of these 

internal hidden layers may need to be adjusted according to the complexity of the actual task and 

production requirements to achieve optimal results). 

When the process scheduling begins, every 10 rounds check if all processes in the queue have 

exhausted their time slices. If the exhaustion ratio exceeds 𝑟𝑎𝑑𝑖𝑜ℎ𝑖𝑔ℎ_𝑙𝑒𝑣𝑒𝑙𝑟𝑎𝑑𝑖𝑜𝑙𝑜𝑤_𝑙𝑒𝑣𝑒𝑙 the 

maximum threshold, it is determined that the majority of process tasks are CPU-intensive. To reduce 

context switching and increase system throughput, the time slices for each queue are doubled. 

Conversely, if the exhaustion ratio is below the minimum threshold, it is determined that the majority 

of process tasks are I/O-intensive. To reduce overhead and increase system throughput, the time slices 

for each queue are reduced. 

 

Figure 3: Dynamic time slice adjustment flow chart 

5. Numerical experimental verification 

As a preferred option, the evaluation method of the multi-level feedback queue scheduling method 

combining reinforcement learning and dynamic time slot adjustment is: 

Turnaround TimeAverage =  
∑(Timeend − Timearrival)

n
    

Wait TimeAverage =
∑(Turnaround Time − Execution Time)

n
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Handling Capacity =
n

Total Time
 

 Utilization RateCPU =
∑Execution Time

Total Time
 

In this experimental example, our experimental results are based on the simulation data to compare 

the performance of the invention "multi-level feedback queue scheduling method combining 

reinforcement learning and dynamic time slice adjustment" with the traditional multi-level feedback 

queue (MFQS) algorithm and the benchmark algorithm (single time slice scheduling). 

In order to reduce the randomness and more conform to the real situation, we set 100 tasks, in 

which the arrival 𝜆 = 5time of tasks follows poisson distribution (); the execution time of tasks 

follows uniform distribution (10ms to 100ms); 

The performance of the traditional multi-level feedback queue (MFQS), the benchmark algorithm 

(single time slice) and the invention (DQN+ dynamic adjustment) was compared in the experiment, 

and the results are shown in the following table 1: 

Table 1: Comparison of scheduling algorithm performance 

Algorithm Throughput 

(tasks/second) 

Average 

waiting 

time (ms) 

Total 

completion 

time (ms) 

Context 

switching 

time 

Total 

rewards 

Tradition MFQS 85 40 382 60 10.0 

Baseline (single time 

slice 4) 

80 45 393 71 8.9 

This invention (DQN + 

dynamic adjustment) 

100 30 340 18 14.2 

Throughput: This invention improves by 18% (100 vs 85), outperforming traditional MFQS and 

benchmark algorithms; Throughput: This invention improves by 18% (100 vs 85), outperforming 

traditional MFQS and benchmark algorithms; Average Wait Time: This invention reduces by 25% 

(30ms vs 40ms), making task responses faster; Total Completion Time: This invention decreases by 

11% (340ms vs 382ms), enhancing overall efficiency; Context Switches: This invention reduces by 

70% (18 vs 60), significantly lowering system overhead. Total Rewards: This invention increases by 

42% (14.2 vs 10.0), with more optimized scheduling strategies. 

6. Summary 

This paper proposes a multi-level feedback queue scheduling method that combines reinforcement 

learning and dynamic time slot adjustment. In practical applications, this method can effectively 

address the issue of fixed time slots for each queue in traditional multi-level feedback queue 

scheduling algorithms, which often fails to meet complex load requirements. By adopting the DQN 

strategy, we allocate the most suitable queue for each process task, rather than uniformly placing them 

in the highest priority queue first. We can then dynamically adjust the time slot lengths of each queue 

based on the type and proportion of system tasks (whether the task is CPU-intensive or I/O-intensive) 

to improve throughput and reduce unnecessary context switching. 
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