
A Multi-Level Feedback Queue Optimization Method

Based on Reinforcement Learning and Dynamic Time

Slice Scheduling

Zhong Wenxuan

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018,

Zhejiang, China

Keywords: Reinforcement Learning; Dynamic Time Slice Scheduling; Operating System;

Multi-Level Feedback Queue

Abstract: This invention pertains to the field of reinforcement learning and discloses a multi-

level feedback queue optimization method [2] based on reinforcement learning and dynamic

time slot scheduling. It involves separately obtaining process feature data, system load data,

user experience data, and hardware-related data. The acquired data is preprocessed to ensure

accuracy and reliability. Based on the preprocessed data, the data sets for process features,

system load, user experience, and hardware-related are formed through numbering. Using

these numbered datasets, the process feature index, system load rate, user experience index,

and hardware load rate are calculated. A comprehensive evaluation of queue priority values

is conducted, and multi-level feedback queue optimization is implemented based on these

evaluated queue priority values. This approach considers multiple dimensions of scheduling

methods, enhancing the quality and accuracy of scheduling decisions, avoiding certain

processes from occupying too many resources and affecting the operation of other processes,

making multi-level feedback queue optimization more equitable.

1. Background Introduction

The Multi-levelFeedbackQueue (MFQ) scheduling algorithm is an efficient method used for task

scheduling in operating systems, aiming to optimize CPU usage and system response time. In

computer systems, the allocation of processor resources is one of the key issues in operating system

design. Traditional scheduling algorithms such as First-Come-First-Served (FCFS), Shortest Job First

(SJF), Priority Scheduling, and Round Robin (RR) each have their advantages and disadvantages,

failing to fully meet the demands of modern complex computing environments. With the rapid

increase in servers and tasks, and the growing complexity of resource scheduling methods, there is a

need for a scheduling strategy that can adapt to various types of processes and optimize system

performance. The MultilevelFeedbackQueue (MFQ) scheduling algorithm has emerged to address

these needs. It combines the benefits of Round Robin and Priority Scheduling, dynamically adjusting

the priority of tasks in different queues to achieve efficient management and utilization of system

resources.

The existing multi-level feedback queue scheduling algorithms primarily focus on the allocation

Automation and Machine Learning (2025)
Clausius Scientific Press, Canada

DOI: 10.23977/autml.2025.060113
ISSN 2516-5003 Vol. 6 Num. 1

111

and scheduling of CPU resources, with relatively less consideration given to other system resources

such as memory and I/O devices. However, in actual systems, the demand for resources like memory

by processes also impacts system performance. Currently, multi-level feedback queue scheduling

does not adequately incorporate the usage of memory and other resources into its decision-making

process, which may result in some processes failing to run properly, affecting overall resource

utilization. Additionally, it lacks a certain degree of fairness.

In response to the shortcomings of existing technologies, this paper presents a multi-level feedback

queue optimization method based on reinforcement learning and dynamic time slot scheduling. This

approach comprehensively considers multiple dimensions in scheduling, which helps improve the

quality and accuracy of scheduling decisions, reduce resource waste and conflicts, and achieve more

balanced resource allocation. It prevents certain processes from consuming too many resources and

affecting the operation of other processes, ensuring that high-priority or high-user experience index

processes receive better service. Consequently, it enhances overall service quality and makes multi-

level feedback queue optimization more equitable.

2. Introduce reinforcement learning strategy in multi-level feedback queue

This invention addresses the shortcomings of existing technologies and proposes a multi-level

feedback queue scheduling method that combines reinforcement learning with dynamic time slot

adjustment. This method optimizes scheduling decisions by introducing a deep Q network (DQN)

and identifies whether the system's process tasks are primarily CPU-intensive or I/O-intensive to

dynamically adjust the time slot sizes of each queue. Through simulation comparisons, it can

significantly reduce frequent context switches, adapt well to task loads, and enhance system

throughput, thereby significantly improving system efficiency. This method can help optimize

process scheduling algorithms in actual operating system development, enabling the system to

achieve higher throughput, which is of great significance for the development of process scheduling

in operating systems.

First, we need to establish a basic multi-level feedback mechanism, allowing the system to set

multiple priority queues for tasks and initialize different time slice lengths for each queue: high-

priority queues have shorter time slices; low-priority queues have longer time slices, with subsequent

queue time slice lengths remaining constant; when a new task arrives, it is initially placed in the

highest priority queue; if the task is not completed within the current queue's time slice, it will be

moved to the next lower priority queue; high-priority tasks preempt the execution resources of low-

priority tasks; if tasks in low-priority queues remain un-scheduled for an extended period, the priority

of all processes can be increased through an aging (Aging) mechanism to prevent "hunger" issues.

We set the observation state space as the 𝑠𝑎queue length and the action space as the selection of

the execution queue.

We use the DQN model to select the best queue according to the queue length 𝜀state. The training

adopts the experience recovery and-greedy strategy, and the Q value update formula is:

 𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max(𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)] (1)

Among them, is the 𝑠𝑎𝑟 𝛾𝛼current state, is the action, is the immediate reward, is the discount

factor, and is the learning rate.

This formula is the core of the learning algorithm𝑄(𝑆, 𝑎)𝑄𝑄(𝑠, 𝑎)𝑄𝑄(𝑠, 𝑎), which is used to

update the state-action pair and the value of the state-action pair. The value represents the long-term

expected return of taking action a under state s. Through continuous iterative update, it gradually

approaches the optimal value, so as to guide the scheduler to choose the best action.

The training optimization DQN mechanism is defined as follows: rewards are allocated according

112

to the execution results of tasks, with +1 for completed tasks, -0.1 for unfinished tasks, and-1 for

empty queue selection. The total reward is calculated as follows:

 𝑅 = ∑(𝑟𝑒𝑤𝑎𝑟𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 + 𝑟𝑒𝑤𝑎𝑟𝑑𝑖𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 + 𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑚𝑝𝑡𝑦) (2)

The R value obtained by this formula is used to train and optimize the DQN strategy.

This total reward R is used as the goal of the deep Q network 𝑄𝑅(DQN) to drive the learning

algorithm to optimize the decision. DQN learns to select the best queue by maximizing the expected

value, so as to improve the system throughput.

Next, we need to set the context switching penalty: when an unfinished task is downgraded to the

next queue or returned to the original queue, the switching penalty time is increased, 𝐶 = 𝑘 ⋅
 𝑠𝑤𝑖𝑡𝑐ℎ𝑐𝑜𝑢𝑛𝑡𝑠𝑤𝑖𝑡𝑐ℎ𝑐𝑜𝑢𝑛𝑡which is denoted as: where k is the word switching penalty value and is the

number of times the context is switched.

The formula explains that after a task is taken from the selected queue, the execution time is the

smaller value of the remaining time and the time slice. Completing the task rewards +1; failing to

complete it results in a queue demotion and a penalty of-0.1, with an empty queue receiving a penalty

of-1. The DQN dynamically decides which queue to execute based on the current queue status (the

number of tasks in each queue), rather than strictly following the priority order of queue numbers.

This is the first optimization point discussed in this paper.

3. Introduce dynamic time slice adjustment strategy in multi-level feedback queue

Due to the traditional multi-machine feedback queue scheduling where the time slice length [5]

for each queue is fixed, in actual high-load scenarios, segment tasks may experience increased waiting

times due to overly long time slices (even the shortest ones), while long tasks may be frequently

interrupted due to overly short time slices (even the longest time slice in multi-level feedback queues).

Therefore, we differ from the traditional principle of fixing the time slice lengths for each queue after

initialization. Instead, we dynamically adjust the time slice lengths based on the type of background

task and the required time slice length during actual execution, thereby improving scheduling

efficiency!

After every 10 rounds of training in DQN, we adjust the time slice according to the proportion of

𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑟𝑎𝑑𝑖𝑜process task time slice exhaustion:

If so, it is determined to be CPU-intensive and the time slice is doubled:𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑟𝑎𝑑𝑖𝑜 <
 𝑙𝑜𝑤𝑙𝑒𝑣𝑒𝑙𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛

𝑇′ = [2𝑡0, 2𝑡1 … ,2𝑡𝑛−1] (3)

This means that the vast majority of task processes are CPU-intensive, so the time slice length of

each queue is doubled from the original to reduce frequent context switching.

If so, it is determined to be I/O intensive and the time slice is doubled:𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑟𝑎𝑑𝑖𝑜 <
 𝑙𝑜𝑤𝑙𝑒𝑣𝑒𝑙𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛

𝑇′ = [max (1, 𝑡0/2), max (1, 𝑡1/2), … , 𝑚𝑎𝑥(1, 𝑡𝑛−1}/2)] (4)

This means that most of the task processes are I/O intensive, so the time slice length of each queue

is halved from the original.

4. Specific implementation methods

As mentioned above, we provide a multi-level feedback queue scheduling method combining

reinforcement learning [1,2] and dynamic time slot adjustment, which can reduce the overhead of

113

redundant context switching compared with traditional multi-level feedback queue, improve

throughput, and adapt to high load in actual situations. [3,4]

As shown in Figure 1, the overall model structure of this invention includes the (running queue

structure), (priority array (scheduling entity) and (task structure) required by the traditional multi-

level feedback 𝑠𝑡𝑟𝑢𝑐𝑟𝑞𝑠𝑡𝑟𝑢𝑐𝑡𝑟𝑡𝑝𝑟𝑖𝑜𝑎𝑟𝑟𝑎𝑦
, 𝑠𝑡𝑟𝑢𝑐𝑡 𝑠𝑐ℎ𝑒𝑑_𝑟𝑡_𝑒𝑛𝑡𝑖𝑡𝑦𝑠𝑡𝑟𝑢𝑐𝑡 𝑡𝑎𝑠𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 queue, as

well as the DQN module and dynamic time slice adjustment module unique to this patent, in order to

improve the load and throughput.

Figure 1: Overall structure of the model of the invention

First, construct the basic multi-level feedback queue mechanism as shown in Figure 1. The system

sets multiple priority queues for tasks, each with different time slice lengths; when a new task arrives,

it is initially placed in the highest priority queue; if the task is not completed within the current time

slice, it will be moved to the next lower priority queue; high-priority tasks preempt the execution

resources of low-priority tasks; if a task in a low-priority queue remains un-scheduled for an extended

period, its priority can be increased through the aging (Aging) mechanism to prevent starvation issues.

On the basis of the original structure, new member variables are added

𝑠𝑡𝑟𝑢𝑐𝑡 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑎𝑟𝑟𝑎𝑦𝑄𝑖 to calculate the queue score, which is used as the basis for subsequent

dynamic priority adjustment of the queue.

The deep network 𝑄(DQN) is implemented to dynamically select the execution queue according

to the queue state, so that the queue priority is no longer fixed.

Figure 2: Internal structure of DQN

114

Specifically, as shown in Figure 2, the internal structure of DQN, we use the defined total reward

𝑄𝑅function (Formula 2) as the value basis, and the larger the value, the higher the score.

Among them, DQN is used to update the Q value Q(s, a) of the state-action pair (S, a). The Q value

represents the long-term expected return of taking action a under the state s. Through continuous

iterative update, Q(s, a) gradually approaches the optimal value, so as to guide the scheduler to choose

the best action.

We used ReLU as the loss function, and Figure 3 shows the internal parameter network of DQN:

both the input layer and output layer consist of queue Q values. The middle part includes two hidden

layers with a total of 64 parameters (it should be noted that in practice, the parameter values of these

internal hidden layers may need to be adjusted according to the complexity of the actual task and

production requirements to achieve optimal results).

When the process scheduling begins, every 10 rounds check if all processes in the queue have

exhausted their time slices. If the exhaustion ratio exceeds 𝑟𝑎𝑑𝑖𝑜ℎ𝑖𝑔ℎ_𝑙𝑒𝑣𝑒𝑙𝑟𝑎𝑑𝑖𝑜𝑙𝑜𝑤_𝑙𝑒𝑣𝑒𝑙 the

maximum threshold, it is determined that the majority of process tasks are CPU-intensive. To reduce

context switching and increase system throughput, the time slices for each queue are doubled.

Conversely, if the exhaustion ratio is below the minimum threshold, it is determined that the majority

of process tasks are I/O-intensive. To reduce overhead and increase system throughput, the time slices

for each queue are reduced.

Figure 3: Dynamic time slice adjustment flow chart

5. Numerical experimental verification

As a preferred option, the evaluation method of the multi-level feedback queue scheduling method

combining reinforcement learning and dynamic time slot adjustment is:

Turnaround TimeAverage =
∑(Timeend − Timearrival)

n

Wait TimeAverage =
∑(Turnaround Time − Execution Time)

n

115

Handling Capacity =
n

Total Time

 Utilization RateCPU =
∑Execution Time

Total Time

In this experimental example, our experimental results are based on the simulation data to compare

the performance of the invention "multi-level feedback queue scheduling method combining

reinforcement learning and dynamic time slice adjustment" with the traditional multi-level feedback

queue (MFQS) algorithm and the benchmark algorithm (single time slice scheduling).

In order to reduce the randomness and more conform to the real situation, we set 100 tasks, in

which the arrival 𝜆 = 5time of tasks follows poisson distribution (); the execution time of tasks

follows uniform distribution (10ms to 100ms);

The performance of the traditional multi-level feedback queue (MFQS), the benchmark algorithm

(single time slice) and the invention (DQN+ dynamic adjustment) was compared in the experiment,

and the results are shown in the following table 1:

Table 1: Comparison of scheduling algorithm performance

Algorithm Throughput

(tasks/second)

Average

waiting

time (ms)

Total

completion

time (ms)

Context

switching

time

Total

rewards

Tradition MFQS 85 40 382 60 10.0

Baseline (single time

slice 4)

80 45 393 71 8.9

This invention (DQN +

dynamic adjustment)

100 30 340 18 14.2

Throughput: This invention improves by 18% (100 vs 85), outperforming traditional MFQS and

benchmark algorithms; Throughput: This invention improves by 18% (100 vs 85), outperforming

traditional MFQS and benchmark algorithms; Average Wait Time: This invention reduces by 25%

(30ms vs 40ms), making task responses faster; Total Completion Time: This invention decreases by

11% (340ms vs 382ms), enhancing overall efficiency; Context Switches: This invention reduces by

70% (18 vs 60), significantly lowering system overhead. Total Rewards: This invention increases by

42% (14.2 vs 10.0), with more optimized scheduling strategies.

6. Summary

This paper proposes a multi-level feedback queue scheduling method that combines reinforcement

learning and dynamic time slot adjustment. In practical applications, this method can effectively

address the issue of fixed time slots for each queue in traditional multi-level feedback queue

scheduling algorithms, which often fails to meet complex load requirements. By adopting the DQN

strategy, we allocate the most suitable queue for each process task, rather than uniformly placing them

in the highest priority queue first. We can then dynamically adjust the time slot lengths of each queue

based on the type and proportion of system tasks (whether the task is CPU-intensive or I/O-intensive)

to improve throughput and reduce unnecessary context switching.

References

[1] Li Z, Ierapetritou M. Process scheduling under uncertainty: Review and challenges[J]. Computers & Chemical

Engineering, 2008, 32(4-5): 715-727.

[2] Harki N A. Multi-level feedback queue scheduling technique[J]. Cihan University-Erbil Scientific Journal, 2024, 8(2):

36-42.

116

[3] Kilminster S, Zukas M, Quinton N, et al. Preparedness is not enough: understanding transitions as critically intensive

learning periods[J]. Medical education, 2011, 45(10): 1006-1015.

[4] Suresh V, Chaudhuri D. Dynamic scheduling—a survey of research[J]. International journal of production economics,

1993, 32(1): 53-63.

[5] Branke* J, Mattfeld D C. Anticipation and flexibility in dynamic scheduling[J]. International Journal of Production

Research, 2005, 43(15): 3103-3129.

117

