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Abstract: In this paper, we investigate the application of Transformer-based deep learning 

models to structured tabular data, with a focus on credit default prediction. Traditional 

machine learning methods often struggle to capture complex feature interactions and require 

extensive feature engineering when dealing with heterogeneous categorical and numerical 

variables. To address this challenge, we adopt the TabTransformer architecture, which 

combines column embeddings and self-attention mechanisms to enable end-to-end 

representation learning on mixed-type economic data. Extensive experiments on a 

benchmark credit dataset demonstrate that TabTransformer outperforms baseline models—

including logistic regression, random forests, and multilayer perceptrons—in terms of 

classification performance. In addition to predictive accuracy, we integrate SHAP-based 

interpretability, categorical embedding visualization, and attention heatmaps to provide 

transparent insights into the model's decision-making process. Our findings confirm the 

efficacy of deep Transformer models in structured data modeling and reinforce their potential 

for deployment in real-world financial risk assessment systems. 

1. Introduction 

Credit default prediction is a fundamental problem in financial economics and plays a key role in 

risk management and credit decision-making. In the modern banking system, accurate assessment of 

credit risk can help institutions optimize loan allocation, minimize potential losses, and maintain the 

stability of the financial system [1]. Traditionally, statistical models such as logistic regression and 

scorecards are widely used due to their simplicity and interpretability [2]. However, with the 

increasing complexity of financial behavior and the widespread availability of large-scale structured 

data, there is an urgent need to build more complex and powerful prediction models to meet new 

challenges and opportunities [3]. 

In recent years, machine learning techniques, especially ensemble methods such as random forests 

and XGBoost, have demonstrated excellent predictive performance in various credit risk prediction 

tasks [4]. Although these models have obvious advantages in accuracy, they often lack transparency 

and make it difficult to explain why certain individuals are judged as high-risk borrowers. In addition, 

although deep learning has achieved great success in the field of unstructured data such as images 

Information Systems and Economics (2025) 
Clausius Scientific Press, Canada

DOI: 10.23977/infse.2025.060210 
ISSN 2523-6407 Vol. 6 Num. 2

71



and text, its application in structured tabular data (the main form of financial data) is still relatively 

small [5]. There is an urgent need for a model that can not only improve prediction accuracy but also 

provide clear interpretability to enhance its practical application value in economic decision-making 

[6]. 

This paper proposes an interpretable deep learning framework based on TabTransformer for 

default prediction in structured credit data [7]. Based on the Transformer architecture, the model can 

model the interaction between complex features through the self-attention mechanism and process 

categorical variables in an embedded manner, thereby significantly improving the prediction ability 

while maintaining the structural characteristics of economic variables. In order to alleviate the 

interpretation difficulties caused by the "black box" characteristics of deep models, we further 

introduce SHAP (Shapley additive interpretation method) to quantify the feature importance of the 

model and interpret individual predictions [8]. We evaluate the proposed method on a real credit 

dataset, and the results show that the model outperforms traditional methods in both prediction 

accuracy and interpretation ability, and provides a feasible reference for economic policy design and 

risk assessment [9]. 

2. Related Work 

Credit risk modeling has long been a central topic in financial economics, with statistical 

techniques such as logistic regression, discriminant analysis, and survival models (e.g., Cox 

proportional hazards) serving as the backbone of industry practices [10]. These models are valued for 

their interpretability and ease of implementation, allowing financial institutions to make transparent 

and auditable lending decisions. For instance, logistic regression has been extensively adopted in 

constructing credit scoring systems due to its ability to quantify the relationship between borrower 

attributes and default probability [11]. However, such models often rely on linear assumptions and 

limited feature interactions, restricting their performance when dealing with complex, high-

dimensional data common in modern financial systems [12]. 

With the growth of big data and computational power, machine learning (ML) methods have 

gained popularity in the domain of credit scoring. Ensemble methods such as Random Forest, 

Gradient Boosting Machines (GBM), and particularly XGBoost have demonstrated strong predictive 

capabilities in both academic research and industrial applications [13]. These models can 

automatically capture nonlinear relationships and higher-order interactions among features without 

requiring explicit specification. Empirical studies have shown that ML methods often outperform 

traditional statistical models in terms of prediction accuracy. Nevertheless, these techniques tend to 

operate as "black boxes," making it difficult for practitioners to understand model behavior and justify 

decisions—an important consideration in high-stakes financial contexts [14]. 

While deep learning models have shown impressive results in unstructured data such as images 

and texts, their application to tabular data—a dominant format in economic and financial datasets—

remains relatively limited. Recent advances such as TabNet and TabTransformer aim to bridge this 

gap by introducing attention mechanisms and feature embedding techniques to better handle 

structured inputs. In parallel, the growing interest in model interpretability has led to the development 

of explanation tools like LIME and SHAP, which allow researchers and practitioners to uncover the 

decision logic behind complex models. Combining interpretable deep learning with tabular economic 

data offers a promising avenue for improving both prediction performance and economic insight 

extraction. However, there is still limited research integrating these two aspects for credit risk 

assessment, which this study aims to address [15]. 
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3. Data and Preprocessing 

3.1. Dataset Description 

We use the publicly available Default of Credit Card Clients Dataset, originally collected by the 

Taiwanese bank and hosted on Kaggle. The dataset contains financial and demographic information 

of 30,000 clients, including features such as credit limit, repayment history, billing amounts, and 

personal attributes. As shown in Table 1 the target variable “default.payment.next.month” is a binary 

label indicating whether the client defaulted on their credit payment in the following month. 

Table 1: Dataset Overview 

Feature Group Example Variables Description 

Demographics SEX, AGE, MARRIAGE, 

EDUCATION 

Personal attributes 

Financial LIMIT-BAL BILL-AMT1-6, 

PAY-AMT1-6 

Credit limit, bill history, 

payments 

Repayment History PAY-0 to PAY-6 Monthly repayment status 

Label default.payment.next.month 1 = default, 0 = no default 

Total Features: 23 (after removing ID) 

Samples: 30,000 

Class Distribution: ~22% default (positive class), ~78% non-default (imbalanced) 

3.2. Feature Types and Distribution 

The dataset contains several categorical variables that reflect demographic attributes of credit card 

clients. Figure 1 illustrates the distribution of three representative categorical features: gender, 

education level, and marital status. 

 

Figure 1: Distribution of marital status category variables 

The categorical attributes in the dataset reveal several noteworthy demographic patterns. 

Approximately 60% of clients are female and 40% are male, indicating a female-majority credit 

population. In terms of education, most clients hold a university degree (47%) or have completed 

graduate-level education (35%), suggesting that the overall client base is relatively well-educated. 

Regarding marital status, 53% of clients are single and 45% are married, while the rest fall into an 

“others” category. These distributions offer valuable context for understanding the social and 

economic profiles of borrowers, which may influence credit behavior and default risk. 

3.3. Preprocessing Steps 

To prepare the dataset for deep learning, we removed the identifier column(ID) and processed 
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categorical variables such as SEX, EDUCATION, and MARRIAGE by merging rare categories into 

an "others" class. These variables were then integer-encoded for embedding within the 

TabTransformer model. Continuous features including LIMIT_BAL,BILL_AMT-6, and 

PAY_AMT1-6 were scaled to the [0, 1] range using Min-Max normalization. Meanwhile, repayment 

history variables were treated as ordinal categorical inputs to reflect clients’ temporal credit behavior. 

The dataset was partitioned into training (70%), validation (15%), and test (15%) sets using 

stratified sampling to preserve the default rate across subsets. Given the class imbalance (~22% 

default cases), a class-weighted binary cross-entropy loss was employed to mitigate biased learning. 

Performance evaluation focused on AUC and F1-score, which are more appropriate than accuracy in 

imbalanced settings. This preprocessing pipeline ensured both numerical stability for training and the 

retention of economic interpretability. 

4. Methodology 

This study uses TabTransformer, a deep learning model based on the Transformer architecture, to 

model the default probability of credit card users for structured tabular data (including continuous 

and categorical variables). Compared with traditional models, TabTransformer has the ability to 

handle nonlinear feature interactions, preserve the structural relationship between input variables 

through the attention mechanism, and support model interpretability. 

4.1. Model structure 

TabTransformer mainly consists of three parts: Categorical Embedding, Self-Attention Encoder, 

and MLP Head. The model structure diagram is shown in Figure 2: 

 

Figure 2: Model structure diagram 

4.2. Input Representation 

Let each input sample be denoted as x = {𝑥𝑐 , 𝑥𝑟}where: 

𝑥𝑐 ∈ 𝑍𝑚 represents the set of categorical features, such as gender, education, and marital status; 

𝑥𝑟 ∈ 𝑅𝑛 represents the set of continuous features, such as credit limit, bill amounts, and payment 

history. 

Each categorical feature 𝑥𝑐𝑖 is mapped to a dense embedding vector through an embedding layer: 

 Embed( )
i

d

i ce x   (1) 

The embeddings of all m categorical variables are then stacked to form a sequence input to the 
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Transformer encoder: 

 
1 2[ , ,..., ] m d

mE e e e  
 (2)

 

This representation enables the model to capture feature interactions among different categorical 

variables through the attention mechanism. The continuous variables 𝑥𝑟 are preserved in their original 

order and later concatenated with the encoded categorical representation after the Transformer layer. 

This hybrid representation balances structured feature interaction modelling with numerical feature 

integrity, which is particularly important in structured economic datasets. 

4.3. Transformer Encoder Module 

The TabTransformer leverages the encoder structure from the standard Transformer model, which 

consists of stacked layers of multi-head self-attention and position-wise feed-forward networks (FFN). 

This design enables the model to learn complex interactions among categorical feature embeddings. 

Each Transformer encoder layer comprises the following components: 

Multi-Head Self-Attention: Given the embedding matrix E∈ 𝑅𝑚∗𝑑 , the self-attention mechanism 

computes the attention output as: 

 
Attention( , , ) softmax

k

QK
Q K V V

d

 
  

 
   (3)

 

where the queries, keys, and values are linear projections of the input: 

 , ,Q K VQ EW K EW V EW  
 (4)

 

Multiple attention heads are applied in parallel, and their outputs are concatenated and linearly 

transformed: 

 
1MultiHead( ) [head ; ;head ] O

hE W 
 (5)

 

This mechanism allows the model to attend to different types of feature relationships from multiple 

subspaces simultaneously. 

The feed-forward layer is applied independently to each position (i.e., each embedded feature 

vector). Its form is: 

 
1 1 2 2FFN( ) ReLU( )x xW b W b  

 (6)
 

Each encoder block is wrapped with residual connections and layer normalization, ensuring stable 

training and better gradient flow. 

4.4. Concatenation and Classification Head 

After the categorical embeddings are processed through the Transformer encoder layers, the 

resulting transformed features are concatenated with the continuous numerical variables (such as 

credit limit, bill amounts, and payment histories). This step integrates both types of features into a 

unified representation: 

 
cont[Transformer( ); ]H E X

 (7)
 

The concatenated vector H is then fed into a multi-layer perceptron (MLP) classifier, which 
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consists of several fully connected layers with ReLU activations and dropout regularization. 

 ˆ (MLP( ))y H  (8)
 

This design allows the model to effectively capture both complex categorical feature interactions 

(via the Transformer) and numerical feature contributions, enabling accurate and interpretable 

predictions of default risk. 

4.5. Loss Function and Optimization Strategy 

Given the imbalance in the credit default dataset—where default cases constitute approximately 

22% of the total samples—it is essential to adopt a loss function and training strategy that can handle 

such skewed distributions. To this end, we employ the binary cross-entropy loss with class weighting, 

defined as: 

 
 1 0

1

1
ˆ ˆlog( ) (1 ) log(1 )

N

i i i i

i

w y y w y y
N 

    
 (9)

 

For optimization, we use the Adam optimizer with a learning rate of 0.00001, combined with early 

stopping based on validation AUC to prevent overfitting. In addition, dropout layers are inserted 

between MLP layers to enhance generalization, and batch normalization is applied after each fully 

connected layer to stabilize training. 

5. Experimental Results and Analysis 

5.1. Experimental Setup 

To evaluate the performance of the proposed TabTransformer model on the credit default 

prediction task, we implemented the model using PyTorch and conducted experiments on the 

processed dataset described in Section 3. The training, validation, and test sets were constructed using 

a 70%-15%-15% split with stratified sampling to preserve the class distribution. The model was 

trained using the Adam optimizer with an initial learning rate of 1e-4, batch size of 512, and an early 

stopping mechanism based on validation loss. 

We compared TabTransformer with the following baselines: Logistic Regression (LR): A standard 

linear classifier used in many credit scoring applications, Random Forest (RF): An ensemble-based 

non-linear classifier known for its robustness, XGBoost: A gradient boosting method widely adopted 

in financial applications. MLP: A fully connected neural network trained on concatenated numerical 

and one-hot encoded categorical features. 

All models were evaluated under the same data splits and trained using binary cross-entropy loss, 

with class weights applied to account for imbalance in default labels. 

5.2. Performance Metrics and Comparison 

As shown in the Figure 3, TabTransformer outperformed all baselines in AUC and F1-score, 

indicating its superior ability to handle mixed-type tabular data and detect rare default cases. The 

performance gain is especially notable in the F1-score, reflecting the model’s effectiveness in 

balancing false positives and false negatives. 
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Figure 3: Performance Comparison of Different Models 

Figure 4 presents the ROC (Receiver Operating Characteristic) curves of the five evaluated models: 

Logistic Regression, Random Forest, XGBoost, MLP, and the proposed TabTransformer. The x-axis 

represents the false positive rate, while the y-axis denotes the true positive rate. Among all models, 

TabTransformer achieves the highest AUC, demonstrating its superior ability to discriminate between 

defaulters and non-defaulters. Compared to traditional models such as Logistic Regression and 

ensemble-based methods like Random Forest and XGBoost, the TabTransformer curve is consistently 

closer to the top-left corner, indicating more effective classification performance across different 

thresholds. 

 

Figure 4: ROC Curves of Competing Models 

5.3. Interpretability and Feature Impact 

To enhance the transparency of our model and provide economic insight into feature influence, we 

employed SHapley Additive Explanations (SHAP) to interpret the output of the trained 

TabTransformer. SHAP assigns each feature a contribution score for a given prediction, allowing us 

to quantify both global and instance-level feature importance. 

Figure 5 shows the top 10 most influential features ranked by their mean absolute SHAP values. 

Variables such as PAY_1 (most recent repayment status), LIMIT_BAL (credit limit), and 

PAY_AMT1 (recent repayment amount) have the highest impacts on the model’s output. This aligns 

well with economic intuition, as recent repayment behavior and available credit are critical indicators 

of a client’s creditworthiness. 
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Figure 5: Top 10 Features Ranked by SHAP Values 

In addition to feature importance, we further visualized the learned representations of categorical 

variables using dimensionality reduction techniques. Figure 6 presents a PCA plot of the embedding 

vectors for the EDUCATION and MARRIAGE categories. The clusters indicate that the 

TabTransformer has successfully captured semantic separability between different groups, revealing 

latent relationships between demographic attributes and credit risk. 

 

Figure 6: Visualization of Categorical Embeddings 

To better understand how the model leverages temporal repayment patterns, we extracted and 

visualized the attention weights from the Transformer encoder. As illustrated in Figure 7, the model 

assigns higher attention scores to recent repayment features such as PAY_0, PAY_1, and PAY_2, 

compared to earlier months. This attention concentration supports the assumption that recent behavior 

carries more predictive power in credit risk assessment. 
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Figure 7: Attention Heatmap 

6. Conclusion 

In this study, we explored the effectiveness of applying deep learning techniques to structured 

economic data by leveraging the TabTransformer architecture for credit default prediction. Unlike 

traditional machine learning methods that rely on extensive manual feature engineering or ensemble 

strategies, the TabTransformer natively integrates categorical embeddings and Transformer-based 

attention mechanisms, enabling end-to-end representation learning directly from tabular inputs. 

Our experimental results demonstrated that the TabTransformer consistently outperformed 

baseline models—including Logistic Regression, Random Forest, XGBoost, and MLP—across 

multiple metrics such as AUC, F1-score, and accuracy. This performance gain underscores the 

model’s ability to capture non-linear interactions and temporal dependencies among financial features 

in a highly expressive manner. 

Furthermore, we incorporated model interpretability into the learning pipeline by employing 

SHAP values, embedding visualizations, and attention heatmaps. These techniques not only helped 

demystify the model’s internal decision-making process but also provided actionable economic 

insights, such as the prioritization of recent repayment behavior and demographic relevance. The 

integration of interpretability strengthens the practical utility of deep learning models in high-stakes 

financial applications, aligning with the growing emphasis on transparency in AI-driven systems. 

In future work, we aim to extend the current framework to multi-task settings, incorporate time-

series sequence models for dynamic repayment behavior, and explore federated learning for privacy-

preserving credit scoring. Overall, this research highlights the promising role of Transformer-based 

models in structured data modeling and contributes to the expanding frontier of deep learning 

applications in computational finance. 
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