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Abstract: In the past several years, Physics-Informed Neural Network (PINN) for solving 

partial differential equations (PDE) has an advance development, however, under the 

traditional sampling method, it is difficult for the network to accurately capture the 

changes of the solution in complex areas. For this reason, we propose a spatio-temporal 

collaborative sampling strategy of PINN for solving PDE, to optimize the layout of omni-

directional sampling points. In our method, the time interval is first subdivided into 

multiple sub-intervals, and local optimization sampling is performed for each sub-interval. 

The entire procedures of sampling will be pulled out alternatively in two stages in each 

sub-interval: first, in the aspect of spatial adaptive sampling, we adopt a dynamic 

resampling strategy based on the dynamical training error of neural network, which can 

sensitively identify the changing region of the solution and automatically increase the 

sampling density in the region with dramatic changes to capture more details; Secondly, 

time dimension sampling was performed similarly. Numerical tests on the Schrödinger 

and heat-conduction PDE show over 40% faster convergence and a reduction in relative 

L2 compared to traditional PINN. This work presents a new approach for efficiently 

solving complex PDE with PINN. 

1. Introduction 

With the rapid development of deep learning technology, the PINN shows the potential to 

improve an accuracy in solving PDE [1][2]. Unlike traditional numerical methods like the finite 

element method, PINN combine the physical constraints of PDE into the loss function of the neural 

network, which could enable the model to directly estimate the solution of PDE in the continuous 

domain without the need for cumbersome grid partitioning and discretization. Waheed et al.[3] put 

forward the Kronecker neural network to address the issue of spectrum deviation during wave field 

computation; Roy et al.[4] proposed an Adaptive PINN for simulating transient diffusion problems 
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in heterogeneous media. 

In terms of algorithm and theoretical research, McClenny et al.[5] developed an adaptive PINN 

to improve the theoretical system; Yu et al.[6] improved PINN to deal with forward and inverse 

PDE problems by gradient enhancement. In applications, Bai et al.[7] used the improved PINN in 

the financial field; Xiang et al.[8] employed adaptive loss balancing to optimize PINN training. 

Mattey et al.[9] proposed a sequential training method to solve a specific equation, Dong et al.[10] 

put to use local extreme learning machine and domain decomposition to solve PDE; Yan et al.[11] 

applied the boundary element method combined with nonlinear polarization curve modeling in 

electrochemistry. In addition, physical information machine learning is also utilized to head impact 

detection[12]. Zhang et al.[13]proposed a self-supervised mesh generation method called 

MeshKINN based on PINN and KAN. Cui et al.[14]proposed a method that combines PINN and 

LSTM to enhance the predictive ability of learning models by utilizing the physical properties of 

batteries. Zhang et al.[15]used a physical information-based neural network method with embedded 

conservation laws to solve the Hirota equation. Cao et al.[16]designed a physics informed 

interactive learning convolutional recursive network for spatiotemporal dynamics. Overall, these 

studies demonstrate the potential of PINN in multiple interdisciplinary fields. 

When solving PDE using PINN, sampling is a key factor that connects physical laws with neural 

networks and affects the accuracy of the solution. Its density, distribution, and strategy directly 

determine whether the model can accurately capture the characteristics of the solution. PINN have 

met with a series of challenges in practical applications, such as the solution accuracy and 

convergence speed highly depending on data point distribution[17][18].  

Under the traditional sampling strategy, it is difficult for the network to accurately capture the 

changes of the solution in complex areas, resulting in large local residuals[19][20]. Pienaar et al. 

used Hilbert curve[21]for sampling optimization, and Nabian et al.[22]effectively adjusted the 

sampling points of the PINN through importance sampling, and achieved effective training of the 

PINN through importance sampling. Luo et al.[23] introduced Residual-based Smote (RSmote), a 

local adaptive sampling technique that integrates imbalanced learning’s oversampling to target 

high-residual regions in PINNs. This technique achieves comparable accuracy with reduced 

memory usage, especially for high-dimensional PDEs. Fang et al.[24] developed a PINN based on a 

mixture of Cartesian grid sampling and Latin hypercube sampling to solve forward and backward 

modified diffusion equations. This neural network solver can be generalized to other PDE. Anticev 

et al.[25]proposed SGM-PINN, a graph-based importance sampling framework to improve the 

training efficacy of PINN on parameterized problems, biasing sampling towards more important 

clusters allows smaller mini-batches and training datasets, improving training speed and accuracy. 

Guo et al.[26] proposed a temporal causality-based adaptive sampling method that dynamically 

determines sampling ratios by integrating PDE residual and temporal causality, addressing the 

underutilization of temporal information in sampling for time-dependent PDEs. 

In order to solve the problem of low training efficiency caused by insufficient distribution of data 

points, we propose a new spatiotemporal collaborative adaptive resampling method to optimize the 

data distribution of PINN in PDE solutions. We divide the time domain into multiple consecutive 

subintervals and alternate between spatial resampling and temporal resampling within each sub 

interval. During the spatial resampling stage, a fixed time point is used to increase the sampling 

density in areas with significant changes in the solution based on the residual probability density 

function; During the time resampling process, fixed spatial points are used, and sampling points are 

dynamically increased during periods of rapid physical quantity changes. We combine 

spatiotemporal co sampling to adaptively adjust the distribution of sampling points and avoid error 

accumulation. Unlike static importance sampling, our method can dynamically adjust the sampling 

strategy based on the current training state of the model, effectively capturing the local variation 
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characteristics of the solution. Finally, numerical experiments were conducted on typical PDE tasks 

such as Nonlinear Schrödinger equation and Heat Conduction equation.  

This paper is organized as follows. Section 2 mainly introduces the adaptive sampling method 

and our method, as well as the network architecture used. The third section is the experimental part, 

where we compared the effectiveness of our innovative method with the traditional PINN method, 

and demonstrated the effectiveness of the spatiotemporal resampling method through several classic 

numerical experiments. Section 4 is a summary of this article and discusses future prospects. 

2. Methods 

In this section, we introduce the adaptive sampling strategy, the innovative spatiotemporal 

resampling method proposed of this paper, and its corresponding initial condition processing 

scheme. It also briefly reviews the core model PINN, laying a theoretical foundation for the 

subsequent research content. 

2.1 PINN 

PINN have opened up a new avenue in solving PDE. As proposed by Lu et al.[27], the core of 

the PINN method is to integrate the physical constraint equations within the PDE into the neural 

network loss function.  

Consider the general form of spatiotemporal PDE:  
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Where ( , )u x t  is the solution of the equation, [ ] is a nonlinear differential operator, x is a 

space variable, and t is a time variable. [ ]B  represents the boundary operator, acting on ( , )u x t , and 

Ωx   indicates that x  takes the boundary points of region Ω . The initial conditions specify the 

value of the unknown function u  in region Ω  at time 0t  , where ( )h x  is a given function with 

respect to spatial variables. ( , )f x t  is the given source term that determines the internal behavior of 

the equation, while ( , )g x t  characterizes the physical conditions or constraints on the boundary. 

PDE residuals: The neural network prediction value is substituted into the PDE, and the residual 

is defined as the difference from 0: 
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Boundary condition loss: The error between the model’s predicted solution and the actual 

boundary condition is calculated as: 
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Initial condition loss: The error between the model’s predicted solution and the actual initial 

condition is calculated as: 
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Total loss: 

0 0( ) ( ) ( ) ( )r r b bL L L L                                               (5) 

In the relevant settings for solving PDE with PINN, r , b , and 0  are weight hyperparameters 

of the loss function. They are used to control the proportions of the residual loss ( )rL  , the 

boundary loss ( )bL  , and the initial condition loss 0 ( )L  in the total loss, respectively. The larger 

the value, the more attention is paid to the corresponding constraint fitting. rN , bN  and 0N  are 

parameters for the number of training data points. The principle of the PINN method is to construct 

a neural network to approximate the solution of the partial differential equation. It then employs 

automatic differentiation to calculate the derivative of the solution. Next, it optimizes the errors of 

the PDE, initial conditions, and boundary conditions as a loss function. In this manner, it can 

approximate the numerical solution of the PDE without the need for grid discretization. 

The selection of sampling points is crucial not only in PINN but also in many other fields 

[28][29]. In the context of solving pdes with PINN, Lu et al.[30] proposed RAR, an adaptive 

sampling method to boost training efficiency. It selects new training points via PDE residuals in 

PINN training, improving accuracy and convergence. Practically, it samples randomly across the 

domain and picks the largest residual point, possibly overfocusing on local high-residual regions, 

ignoring others, and limiting global optimal search.To address this, researchers proposed RAD. It 

samples via residual probability density function, with each point's probability proportional to its 

PDE residual. This prioritizes high-error regions for encrypted sampling, reducing low-residual 

invalid computations and improving model accuracy and efficiency. 

2.2 Spatial-temporal co-sampling method 

To better capture spatio-temporal features and avoid non-convergence when solving PDE in 

specific spatio-temporal scenarios, we have made an innovative extension to the PINN: after the 

model iterates a fixed number of times, the time interval is divided into specified sub-intervals, and 

each sub-interval sequentially undergoes a two-stage optimized sampling process of "fixing time to 

sample space → fixing space to sample time".  

Algorithm 1: Spatio-Temporal Sampling-Optimized Adaptive PINN Algorithm 

Require:Time interval: start end[ , ]t t  split into N sub-intervals  iT  of length 

end startt t
t

N


     

Ensure: Spatio-temporal sampling →Update training set →Optimize Adaptive 

PINN 

repeat 

1:  Temporally-fixed, spatially-adaptive sampling: 

2:  Randomly select a set of time points 
,i s i from the sub – interval iT  

3:   

4:  Spatially-fixed, temporally-adaptive sampling: 

5:  Randomly select a set of spatial points sX from the sub-interval iT  

6:  

Until: The training residual on the updated training set is less than the predefined 

value.  
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Although the RAD method can improve solution efficiency, it still has some limitations in terms 

of the time dimension. In addition, the application of the RAD method is mainly focused on one-

dimensional problems, and two-dimensional PDEs have not been solved, which limits its 

applicability in complex scenarios.In order to overcome these limitations, we propose an adaptive 

physics-informed neural network with alternate sampling in time and space, called ATS-PINN. The 

core of our method for solving spatio-temporal PDEs is spatio-temporal collaborative sampling, 

which aims to optimize the layout of omni-directional sampling points (Algorithm 1). The 

algorithm first partitions the temporal domain start end[ , ]t t  into N sub-intervals iT  with 

end startt t
t

N


  . For each sub-interval iT , a set of temporal points

,i s
 is randomly selected for time-

fixed, space-adaptive sampling. The model parameters are updated through the Train(·) function 

using a combination of the base dataset D and resampled points. Similarly, spatial points sX are 

sampled from spatial sub-intervals, and temporal points are adaptively resampled using txS  to form 

the final spatio-temporal 

•Time domain fixed, spatial adaptive sampling 

In each sub-interval, several time points kt  are randomly selected, and the spatial discrete point 

1{ }N

i ix   is sampled at these time points to construct the sample point set 1{( , )}N

i ix t  .Then, the 

current PINN model is used to predict ( , ; )û x t  , and the corresponding residual ( , )iR x t  is 

calculated.  

,( , ) [ ( , )] ( , )ˆ
x tR x t u x t f x t                                                      (6) 

Based on the residual distribution, a normalized probability density function is constructed, and a 

new set of spatial points 1{ }M

i ix   is resampled to generate a new training sample set. Finally, the 

training data set 
updated old new   is updated and the training is continued to optimize the network 

parameter  .  

The formula of probability density function is: 

1

| ( , ) |
( | )

| ( , ) |

i
i j

j
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P x t

R x t











                                                              (7) 

•Space fixed, time domain adaptive sampling 

After the time domain of the sub-interval is fixed and the spatial adaptive sampling is completed, 

several fixed spatial points x
 are randomly selected, and time sampling is performed on these 

spatial positions to generate a time point set 1{ }N

i it  , thereby constructing a sample point set 

1{( , )}N

i ix t

 . Then, the current PINN model is used to predict ( , ; )û x t  and calculate the 

corresponding residuals ( )rL  . 

Based on the residual distribution, the normalized probability density function is constructed, 

and the time point is resampled accordingly to generate a new training sample 1{( , )}N

i ix t

 , update 

the data set new 1{( , )}M

i iS x t


  and continue training to optimize the network parameter  .(Figure1) 

PINN training proceed son new sampling points, iteratively updating network parameters   

using a loss function: 
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( )L  : 0 0( ) ( ) ( ) ( )r r b bL L L L                                           (8) 

(In the ( )L  expression, ( )rL   , ( )bL   and 0 ( )L   are defined as in Section 2.1). The PINN 

processes the boundary and initial conditions of PDE by explicitly adding their corresponding loss 

terms to the total loss function. 

If termination conditions (max iterations or residual convergence) are met, training stops. 

Otherwise, alternate spatial-time point optimization continues for better model accuracy and 

generalization. 

 

Figure 1: The network architecture of ATS-PINN.  

(a) ATS-PINN integration architecture diagram. (b) ATS-PINN internal detailed mechanism 

diagram. This figure reflects the spatiotemporal adaptive sampling optimization process, and 

includes a two-stage progressive sampling strategy and corresponding visual sampling graph. 
Figure 1 depicts our iterative process based on the Adaptive PINN, which takes spatiotemporal 

coordinates ( , , )x y T  and model parameters   as inputs. During training, spatial and temporal 

adaptive sampling are executed alternately (the interaction logic is shown in Figure 1b). Moreover, 

the sampling of each subinterval inherits the state from the previous one (for example, 0u  is 

processed by the network to obtain 1u , and subsequent iterations continue with the parameters   

and output states), enabling the transfer of spatiotemporal information across different scales. In the 

core process, the residual formula 
,( , ) [ ( , )] ( , )ˆ

x tR x t N u x t f x t   is first used to quantify the 

deviation. Here, ( , ; )û x t   represents the prediction of the PINN at the spatiotemporal point  ,x t , 

,x tN  is the equation operator acting on û  (such as the differential operator in PDE), and ( , )f x t  is 

the true physical source term. The difference among them, ( , )R x t , reflects the extent to which the 

prediction deviates from the real physical laws. 

2.3 The initial conditions of sub- intervals 

Our innovation focuses on the strategy of partition-based initial condition transfer. The core idea 

is to divide the time interval into multiple sub-intervals after a fixed number of model iterations. For 

each sub-interval, we perform a two-stage optimized sampling process: first, fixing time to sample 
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space, and then fixing space to sample time. This iterative sampling process is designed to better 

adapt to the spatio-temporal characteristics of the problem. Mathematically, consider the following 

equation system:  

( )

1 1

( ,0) ( )

( ) ( )k

k k

u x h x

u t u t 





                                                             (9) 

The first equation ( ,0) ( )u x h x provides the initial condition for the PDE defined within the first 

sub-interval. In the second equation ( )

1 1( ) ( )k

k ku t u t  , the solution state 1( )ku t   from the k-1th sub-

interval is used as the initial condition for the k-th sub-interval. In this way, the model can capture 

spatio-temporal features sequentially and hierarchically.   

3. Results 

In this section, four experiments were conducted to compare with the PINN method. For the 

treatment of initial and boundary conditions, sampling points were selected from these conditions 

and incorporated into the loss function. The fundamental model employed in this paper is PINN, 

and all related code implementations are based on the PyTorch framework. The process and results 

of the test are as follows. 

3.1 Heat conduction equation 

This section will elaborate on the numerical experiments carried out on the task of solving heat 

conduction equations with different orders in spatio-temporal co-sampling, which is of great 

significance for understanding the performance of spatio-temporal co-sampling in dealing with such 

problems. 

3.1.1 One-dimensional heat conduction equation 

We first consider the following one-dimensional heat conduction equation problem : 

2
2

2
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( ,0) sin( ), [ 1,1],

( 1, ) 0, (1, ) 0, [0,1]

tu u
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t x

u x x x
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 

  
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                        (10) 

First, training and test data are generated based on the equation and initial conditions, with initial 

random sampling to ensure diversity and representativeness. A fully connected neural network is 

built as the solution model: the input layer has 2 neurons (for spatial and temporal variables); the 

hidden layer consists of 3 layers with 32 neurons each; the output layer has 1 neuron (outputting the 

equation solution). The hidden layers use tanh as the activation function and Glorot uniform for 

weight initialization. The network output is transformed to better meet boundary conditions and 

problem characteristics. 

In the initial training, the Adam optimizer is used to train the model, and the learning rate is set 

to 
-310 .After obtaining the initial solution, the interval training is performed: the time interval is 

divided into multiple sub-intervals, and two sampling strategies are used in each sub-interval. 

Firstly, the time space is fixed, and the time points are randomly selected in the sub-interval. Then, 

the space points are sampled at a fixed set of time points 1 2{ , ,..., }mt t t , and the residual value of 

each sample point is calculated: 
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The probability density function is generated by the normalized residual: 
( , )

( , )
( , )

R x t
P x t

R x t



, and 

then the spatial points are resampled according to the probability density function, and the regions 

with larger residuals are preferentially selected to update the training set. Local optimization is 

performed on the sampling points at a fixed time point to improve the spatial resolution. 

Similarly, the fixed space points are optimized for the time points, and the time point sample 

1 2{ , ,..., }mt t t  is generated on a fixed set of space points 1 2{ , ,..., }nx x x . Repeat the above steps until 

the entire time interval is traversed. At the same time, the initial conditions of the subsequent sub-

intervals strictly follow the end state of the previous sub-interval to ensure the continuity of the 

sampling process and the inheritance of the data. In Figure 2, we show the comparison between the 

exact solution and the predicted solution obtained by using PINN, RAR and ATS-PINN 

methods at different times t = 0.5, 0.75. The results indicate that the predictions made by the ATS-

PINN method are in good agreement with the evolution depicted by the exact solution. 

The fluctuation trend of the surface and the numerical variation range of different regions are highly 

consistent, indicating that the model successfully captures the main modes and key features of the 

PDE solution when simulating the solution of the partial differential equation. 

 

Figure 2: Comparison of exact, PINN,RAR and ATS-PINN methods of the One-dimensional heat 

conduction equationat different times. 

Figure 3 compares 3D surface graphs of partial differential equation results. The left shows the 

exact solution distribution over space (x) and time (t); the right shows the spatio-temporal sampling 

model’s predicted solution distribution in the same dimension. Both use color coding to represent 

solution values, facilitating intuitive evaluation of how close the model’s prediction is to the exact 

solution. 

 

Figure 3: Exact solution (left) and predictive solution(right) of one-dimensional heat conduction 

PDE. 
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Figure 4: The loss curve function curve of PINN, RAD, RAR, and ATS-PINN methods for 

optimizing iterations. 

Figure 4 shows the number of iterations and the loss functions of the four methods (PINN, RAD, 

RAR, and ATS-PINN). It can be seen that the optimization effect of the ATS-PINN method is 

superior to other methods. 

Next, we visually analyze the sampling points. The residual heatmap shows residual distribution 

across spatial points when solving the heat conduction equation: warm colors (yellow) indicate high 

residuals (PINN prediction errors), while cool tones (blue) mean low residuals . Red dots in Figure 

5 represent points reselected via residual-driven sampling. From the visualization results of 

sampling points, it can be observed that there are more samples in areas with large residuals, and 

samples are also taken in areas with small residuals. 

 

Figure 5: Sampling diagram of the heat conduction equation.  

(a) Sampling points (marked by red dots): Fix x , sample t . (b) Sampling points (small number): 

Fix t , sample x . (c) Sampling points (large number): Fix x , sample t . (d) Sampling points (large 

number): Fix t , sample x .Red indicates sampling points. 

3.1.2 Two-dimensional heat conduction equation 

The second case study is the two-dimensional heat conduction equation: 
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                                                (12) 

 

Figure 6: PINN model predicted solution (a), and ATS-PINN model predicted solution (b) and 

accurate solution (c) of two-dimensional heat conduction PDE. 

 

Figure 7: Example of Two-dimensional heat conduction equation.  

(a) The predicted absolute error of PINN. (b) The predicted absolute error of ATS-PINN. 

 

Figure 8: Sampling point distribution map.  

(a) Distribution of sampling points on PINN method (b) Distribution of sampling points on ATS-

PINN method (c) Distribution of sampling points on RAR method. 

The model The experiment’s model still uses FNN as its main structure. Visualization results 

(Figure 6) clearly show high consistency between the model’s predictions and real solutions across 

the entire spatial domain, with accurate capture of key distribution trends and features—verifying 
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the model’s effectiveness in solving time-varying PDE problems. Figure 7 shows ATS-PINN has 

smaller absolute errors and more accurate predictions. To better observe data distribution, sampling 

points (red scatter points across the area) of PINN, ATS-PINN, and RAR were visualized with 

residual heatmaps (colors indicating residual magnitudes). Results (Figure 8) show ATS-PINN’s 

sampling better captures key regional info and avoids invalid sampling compared to other methods. 

3.2 Nonlinear Schrödinger Equation 

In this study, we consider the following Nonlinear Schrödinger (NLS) equation: 

2
2

2
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| | 0

2

h h
i h h

t x

 
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Where
real imagh h ih   is a complex-valued function of the spatial variable x  and the temporal 

variable t . 

The NLS equation can be split into its real and imaginary parts: 
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2 2
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h h
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t x

 
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hh
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Periodic boundary conditions are imposed to ensure the periodicity of ( , )h x t  in the x-direction. 

The initial conditions are set as: 

1
( ,0)

cosh( )
realh x

x
 , ( ,0) 0imagh x                                          (16) 

 

Figure 9: Save the prediction results at a specific number of iterations.  

(a) 1000 prediction results; (b) 2000 prediction results; (c) 3000 prediction results; (d)10000 

prediction results. 

To solve the NLS equation, a feedforward neural network is constructed. The network 

takes ( , )x t as input and outputs ( , )real imagh h .The architecture of the network consists of two neurons 

in the input layer, two neurons in each of the middle four layers, and two neurons in the output layer. 

The activation function used is tanh. During the training process, the learning rate is set to
410
.The 
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prediction results(Figure 9) are saved at specific iteration numbers (1000, 2000, 3000, 10000). The 

L-BFGS optimizer is employed for final training. Finally, by drawing the heat map 

of | ( , ) |h x t （ 2 2| ( , ) | real imagh x t h h  ）under specific iterations, the prediction results of the model at 

different training stages are visually displayed, and the performance of the model is improved 

through resampling strategy. Our model's prediction results are visualized with PINN's prediction 

results (Figure 10). 

 

Figure 10: Example of Nonlinear Schrödinger equation.  

(a) The exact solution (right) and the predicted solution (left) of the Schrödinger PDE. (b) The 

predicted residual of PINN method (right) and ATS-PINN method(left) in predicting Nonlinear 

Schrödinger Equation. 

3.3 Klein-Gordon equation 

In this study, we consider the following Klein-Gordon (K-G) equation : 

2 2
2 2

2 2
cos( ) cos ( ), [ 1,1], [0,10]ku u

u u x t x t x t
t x

 
  

 
                  (17) 

Where ( , )u x t denotes the unknown function with respect to the spatial variable x and the 

temporal variable t . 

The initial conditions are set as: 

( ,0) , ( ,0) 0
u

u x x x
t




                                                         (18) 

Dirichlet boundary conditions are imposed to constrain the solution at the boundaries of the 

spatial domain: 

( 1, ) cos( ), (1, ) cos( )u t t u t t                                                     (19) 

We also specify the following parameters for the equation: 

1, 0, 1, 2.k                                                               (20) 
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The reference solution is given by: ( , ) cos( )u x t x t   

To solve the K-G equation, a feedforward neural network is constructed. For verification and 

visualization, heatmaps comparing the true solution, our predicted solution, and the PINN model’s 

output are generated to evaluate the overall spatiotemporal fitting performance, while error 

heatmaps (for both our model and PINN) are plotted to visualize residual distributions at specific 

time points and resampling locations, thus validating the effectiveness of the adaptive sampling 

strategy(Figure 11). 

 

Figure 11: Example of Klein-Gordon equation.  

(a) The exact solution of the Klein-Gordon partial differential equation (left), the predicted 

solution by the ATS-PINN method (middle), and the predicted solution by the PINN method (right). 

(b) The predicted residuals of the PINN method (right) and the ATS-PINN method (left) in 

predicting the Klein-Gordon equation. 

4. Results 

We propose a spatio-temporal collaborative sampling strategy to address the issues of low 

sampling efficiency and insufficient spatiotemporal continuity in solving PDE using PINN. By 

dynamically connecting time subintervals, residual-driven adaptive resampling, and incremental 

training, we ensure spatiotemporal continuity, balance sampling in high and low residual regions, to 

improve solution accuracy and efficiency. To systematically evaluate the effectiveness of the 

spatio-temporal collaborative sampling strategy in solving PDE, we conduct a comprehensive study 

on multiple representative one-dimensional and two-dimensional PDE cases. The research results 

indicate that the spatio-temporal collaborative sampling strategy can improve the solution accuracy 

of the PINN. In the comparative experiments of RAR, RAD, and PINN, our method has a smaller 

absolute error and improved solution performance. In one-dimensional and two-dimensional heat 

conduction equation experiments, by comparing the model training process under traditional 

methods and the new strategies, we find that this mechanism can effectively shorten the 

convergence time of the model, allowing the model to reach the ideal solution state faster. The 

experimental data shows that as the number of time interval segments gradually increases from 2 to 

8, the final loss value of the model shows a continuous downward trend. This phenomenon shows 

that by reasonably increasing the number of segments in the time interval, the loss function value 

can be effectively reduced, thereby significantly improving the accuracy of solving the two-
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dimensional heat equation. In the Schrödinger equation experiment, our proposed "knowledge 

inheritance" mechanism and optimized sampling strategy can significantly improve the accuracy of 

solving equations compared to traditional PINN. Our method not only improves sampling 

efficiency but also significantly enhances the accuracy of the model solution, resulting in a solution 

that is closer to the actual value. 

We further validate the effectiveness of this strategy in improving solution efficiency through 

comparative experiments on typical PDE: one-dimensional heat conduction, two-dimensional heat 

conduction, Klein-Gordon equation, and Schrödinger equation. Whether facing cross-dimensional 

problems (from 1D to 2D) or different types of equations such as elliptic and parabolic equations, 

this strategy demonstrates good adaptability and universality. 
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