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Abstract: In contemporary civil engineering, concrete stands as a preeminent construction 

material, with its compressive strength serving as a core parameter for the safety assessment 

of engineering structures. This study proposes constructing multiple integrated regression 

learning models for predictive analysis, supported by interpretable model frameworks to 

enhance the accuracy of predicting concrete compressive strength. Leveraging the public 

dataset from the Heywhale community, a comparative analysis of model architectures 

reveals that the CatBoost model demonstrates optimal comprehensive performance, 

achieving an R² value of 0.92. By employing the advanced SHAP-based DeepExplainer 

framework, it is identified that Age and Cement are the primary positive influencing factors. 

Correspondingly, a three-dimensional parameter optimization system is proposed. This 

approach not only shortens the testing cycle for concrete compressive strength and optimizes 

concrete mix design but also provides an efficient and convenient tool for real-time project 

quality monitoring. 

1. Introduction 

As the most significant amount of artificial construction material in the world[1], the compressive 

strength of concrete is a core indicator for assessing the safety and durability of engineering structures. 

Traditional methods mainly rely on destructive testing of standard laboratory specimens, which have 

the limitations of being time-consuming, costly, and unable to provide real-time feedback on the 

actual strength status at the project site[2]. By accurately and efficiently predicting the compressive 

strength of concrete, it can not only monitor the quality of the project in real time and eliminate 

potential safety hazards in time, but also significantly improve the efficiency of the project, which is 

of great significance in the aspects of project quality control, cost management, and green and 

sustainable development. 

The research on concrete compressive strength prediction at home and abroad presents the trend 

of traditional methods and artificial intelligence technology going hand in hand. The conventional 

method relies on a laboratory standard specimen destructive test. Strict specifications have been 

established at home and abroad (e.g., China's Standard for Test Methods of Mechanical Properties of 

Ordinary Concrete [3], the U.S. ASTM standard). Still, it has the inherent shortcomings of an 
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extended period, high cost, and the inability to reflect the real performance of the engineering site. 

Domestic scholars use the BP neural network and random forest algorithm [4] to achieve multi-factor 

high-precision prediction, and foreign countries explore the application of support vector machines, 

convolutional neural networks, and other models to improve prediction efficiency significantly. 

However, machine learning is generally faced with the problem of "black box", and domestic and 

foreign scholars have introduced SHAP [5], LIME, and other interpretable methods to quantify the 

contribution of features and develop visualisation tools to promote the development of model 

transparency. 

The accuracy of the model prediction and interpretable model analysis still needs to be improved. 

For this reason, this paper is based on actual engineering data, constructs multidimensional feature 

sets, achieves synergistic enhancement of prediction accuracy and interpretability through CatBoost 

parameter optimisation and SHAP in-depth feature profiling, and optimizes the model to improve 

prediction efficiency. It provides a new path for the dynamic control of concrete quality in intelligent 

construction. 

The technical route of this paper is shown in Figure 1. 

 

Figure 1 Experimental flow chart 

2. Analysis of Data Set and Research Methods 

2.1 Data Sources and Analysis 

The data for this study was sourced from (https://www.heywhale.com/home). 

The dataset used in this study contains the proportioning parameters of 1030 sets of concrete 

samples and their compressive strength data, involving a total of nine characteristic variables: Cement, 

Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate, Fine Aggregate, Age, and 

Strength. 

In this study, the strength of concrete was taken as the dependent variable, and Cement, Blast 

Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate, Fine Aggregate, and Age were 

used as independent variables to construct the concrete strength prediction model. 

By performing a statistical description on the independent variable data, the results shown in 
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Tables 1 and 2 are obtained, indicating that the dataset is complete and contains no missing values. 

Table 1 Statistical description table 

 

Cement 

(kg/m³) 

Blast Furnace Slag 

(kg/m³)  

Fly Ash 

(kg/m³) 

Water 

(kg/m³) 

count 1030 1030 1030 1030 

mean 281.1678641 73.89582524 54.18834951 181.5672816 

std 104.5063645 86.27934175 63.99700415 21.35421857 

min 102 0 0 121.8 

25% 192.375 0 0 164.9 

50% 272.9 22 0 185 

75% 350 142.95 118.3 192 

max 540 359.4 200.1 247 

Table 2 Descriptive table of data statistics (continued) 

 

Superplasticizer 

(kg/m³) 

Coarse Aggregate 

(kg/m³) 

Fine Aggregate 

(kg/m³) 

Age 

(day) 

count 1030 1030 1030 1030 

mean 6.204660194 972.918932 773.5804854 45.66213592 

std 5.973841392 77.75395397 80.17598014 63.16991158 

min 0 801 594 1 

25% 0 932 730.95 7 

50% 6.4 968 779.5 28 

75% 10.2 1029.4 824 56 

max 32.2 1145 992.6 365 

The data distribution plots for each feature are shown in Figure 2: 

 

Figure 2 Data distribution chart 
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2.2 Model Analysis 

2.2.1 CatBoost Model 

CatBoost is a GBDT framework based on symmetric decision trees as the base learner, featuring 

fewer parameters, support for categorical variables, and high accuracy [6]. Its primary focus is on 

efficiently and reasonably handling categorical features. CatBoost constructs balanced trees, where 

the leaves of the previous tree are split at each step using the same conditions. The feature split pair 

with the lowest loss is selected and applied to all nodes at all levels. The CatBoost algorithm starts 

from an initial state, iteratively constructs decision trees, and updates the model's predicted values 

based on negative gradient information and step size. The results of all iterations are then aggregated 

to obtain the prediction for new samples. In each iteration, the negative gradient is calculated based 

on the current model state, and a new decision tree is constructed to fit the negative gradient, thereby 

gradually optimizing the model's predictive capability. This balanced tree structure facilitates efficient 

CPU implementation and reduces prediction time. Unlike traditional boosting algorithms, CatBoost 

uses different data subsets for model training and residual calculation, preventing target leakage and 

overfitting, effectively countering noise points in the training set, and mitigating gradient estimation 

bias. CatBoost specific algorithm (1):  

𝐶(𝑥) = ∑ [𝐶𝑖,𝑚−1 + 𝜆𝑚𝑇𝑚(𝑥𝑖; 𝜃𝑚)]𝑀
𝑚=1 , 𝐶𝑖,0 = 0        (1) 

𝐶(𝑥) is the CatBoost prediction result;𝑥 is the independent variable; 𝑀 is the total number of 

decision trees; 𝑚 is the number of current iterations; 𝐶𝑖,𝑚−1 is the predicted value of the sample i at 

the iteration m; 𝜆𝑚  is the step size at iteration m; 𝑇𝑚(𝑥𝑖; 𝜃𝑚) is the predicted value of the mth 

decision tree on sale 𝑥𝑖;𝜃𝑚is the parameter of the mth decision tree. 

2.2.2 RF Model 

Random Forest Regression [7] is a classical regression method based on integrated learning, and 

its core idea is to reduce model variance and improve generalisation performance by constructing 

multiple discrepancy decision trees and aggregating prediction results. Various subsets of the same 

size are generated from the original training set using putative sampling, and in the node splitting 

stage of each decision tree, candidate features are randomly selected from all the features, and the 

optimal splitting point is determined by maximising the information gain. Each decision tree grows 

without restriction until the leaf node purity reaches a threshold or the number of samples reaches a 

minimum to preserve the detailed features of the data. For new samples, the predicted values of all 

trees are arithmetically averaged as the final output. The specific algorithm for random forest 

regression (2) is: 

R(x) =
1

B
∑ Ti(x)B

i=1                               (2) 

𝑅(𝑥) is the random forest regression result; 𝑥 is the independent variable; 𝑇𝑖(𝑥) is the predicted 

value of the ith tree; 𝐵 is the total number of trees. 

2.2.3 XGBR Model 

XGBR[8] is a regression model based on the XGBoost (eXtreme Gradient Boosting) algorithm. It 

fits the target variable by iteratively training multiple regression trees (CART trees). In each iteration, 

XGBR calculates the residual between the current model's predicted value and the actual value, then 

constructs a new regression tree to predict this residual. Each tree is designed to reduce the overall 

model's prediction error. By continuously accumulating the prediction results of new trees, the model 
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gradually approaches the actual value, and the final prediction value is obtained by summing the 

prediction results of all regression trees. The specific algorithm is: 

ℒ(𝑥) = ∑ 𝐿(𝑦𝑚, 𝑦̂𝑚) + ∑ Ω(𝑓𝑘)𝐾
𝑘=1

𝑛
𝑚=1                   (3) 

ℒ(𝑥)  is the final output value; 𝐿(𝑦𝑚, 𝑦̂𝑚) is the loss function; Ω(𝑓𝑘)  is the complexity 

regularisation term for the kth tree, defined as (4):  

Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2                           (4) 

𝑇  is the number of leaf nodes in the tree; 𝑤  is the weight of the leaf nodes; γ and λ are 

hyperparameters that control the complexity of the model. 

2.2.4 Evaluation Parameters 

Mean Absolute Error (MAE) is a core indicator used to evaluate the accuracy of prediction models 

or estimation methods. It intuitively reflects the average deviation between predicted values and 

actual observed values, defined as (5): 

MAE =
∑ |𝑦̃i−𝑦̂𝑖|N

i=1

N
                              (5) 

Mean Squared Error (MSE) is a classic indicator for evaluating model fit. It quantifies the 

deviation between the predicted values and the actual observed values by calculating the average of 

the squares of the differences between the predicted values and the actual observed values, and is 

defined as (6): 

MSE = ∑
(ŷi−ỹi)2

N

N
i=1                             (6) 

The Coefficient of Determination (R2) is a key statistic in regression analysis that measures the 

effectiveness of model fit and takes a value ranging from 0 to 1. The closer the value of R2 is to 1, 

the stronger the model's ability to explain the variability of the data; conversely, the closer it is to 0, 

the weaker the model's ability to explain the variability, defined as (7): 

𝑅2 = 1 −
∑ (𝑦̃i−𝑦̂𝑖)2𝑁

𝑖=1

∑ (𝑦̃i−𝑦̅)2𝑁
𝑖=1

                           (7) 

In equations (6), (7) and (8) above, the specific meanings of each element are explained as follows: 

𝑦̂𝑖 represents the predicted value; 𝑦̃i represents the actual observed value; 𝑁 represents the total 

number of samples; 𝑦̅ is the mean value of the actual observed values. 

3 Research Process and Results 

3.1 Model Construction Process Analysis 

The corresponding parameters must be set reasonably to construct the three models accurately. To 

optimise the model parameters and obtain the best prediction results, we use a combination of random 

search and grid search to determine the parameters. 

In constructing a CatBoost model, four parameters, n_estimators, l2_leaf_reg, learning_rate, and 

depth, play a key role in the prediction effect of the model, and therefore need to be adjusted and 

optimised. The training set was comprehensively analysed using the grid search method. The optimal 

parameters of the model were finally determined, and the optimal parameters of the model were 

obtained by randomly searching the training set as follows Table 3: 
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Table 3 CatBoost Parameter Settings 

Parameters Values 

n_estimators 368 

learning_rate 0.34 

depth 4 

l2_leaf_reg 1.96 

In the construction of model 2, the random forest model, the three parameters n_estimators, 

max_depth, and bootstrap need to be adjusted. Through grid search of the training set, the optimal 

parameters of the model are obtained as shown in Table 4: 

Table 4 RF Parameter Settings 

Parameters Values 

n_estimators 400 

max_depth 71 

bootstrap False 

When constructing the XGBR model, its performance is closely related to many parameters. To 

achieve the best prediction results, grid search was used to tune the key parameters colsample_bytree, 

learning_rate, max_depth, min_child_weight, gamma, and n_estimators. The optimal parameters for 

the model are shown in Table 5: 

Table 5 XGBR Parameter Settings 

Parameters Values 

n_estimators 150 

learning_rate 0.3 

colsample_bytree 0.9 

max_depth 3 

min_child_weight 1 

gamma 0 

3.2 Analysis of Projected Results 

Each model predicts the concrete compressive strength of the validation set using the model trained 

above, and the results are shown in Figure 3. 

 

Figure 3 Distribution chart of prediction results 
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As seen from the observation in Figure 3, the CatBoost model predicts the best results, and there 

is not much difference between the RF model and the XGBR model. All three models can fit the 

concrete compressive strength data to a certain extent, but all have different degrees of prediction 

errors. 

 

Figure 4 Scatterplot of prediction results 

As can be seen from Figure 4, the scatter of the CatBoost model is relatively more concentrated 

near the fitting line, which may be slightly better in terms of overall predictive stability; the scatter 

of the RF and XGBR models is relatively more discrete. 

 

Figure 5 Error line graphs 
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As can be seen in the Error line graphs in Figure 5, the prediction errors of all three models 

fluctuate around 0, but the CatBoost model significantly outperforms the RF and XGBR models. 

The model evaluation parameters are shown in Table 6 below: 

Table 6. Parameters for model evaluation 

Models MAE MSE R2 

CatBoost 0.18 0.07 0.92 

RF 0.20 0.09 0.90 

XGBR 0.20 0.08 0.91 

A comparison of the above evaluation parameters reveals that the CatBoost model performs better 

in the three indicators of mean absolute error, mean square error, and coefficient of determination. It 

also has a relatively better prediction accuracy and fitting effect on the concrete compressive strength 

data. Therefore, this paper uses the CatBoost model to predict the concrete compressive strength with 

the best effect. 

4. SHAP Model Interpretability Analysis 

4.1 Introduction to SHAP Model 

SHAP (Shapley Additive Explanations) [9] is an approach to model interpretation based on the 

game theory Shapley Value. The core idea is to decompose the model's predicted value into a 

weighted sum of features while considering the interactions between features to provide an intuitive 

and theoretically rigorous explanation. SHAP improves interpretability in machine learning, assists 

in feature engineering and model optimisation, enhances credibility and fairness, and provides a basis 

for decision-making. And its computational principle (8) is as follows: 

𝑓(𝑥) = 𝜙0 + ∑ 𝜙𝑖
𝑀
𝑖=1                                (8) 

𝜙0 is the baseline value;𝜙𝑖 is the SHAP value of feature i, which is calculated as follows (9): 

ϕi = ∑
|S|!(M−|S|−1)!

M!S⊆{1,…,M} \{i} [f(xS∪{i}) − f(xS)]               (9) 

𝑀 is the number of features; 𝑆 is the subset of features that does not include feature i; 𝑥𝑆 is the 

feature value retained only in subset S; 𝑓(𝑥𝑆) is the predicted value based on subset S; 
|𝑆|!(𝑀−|𝑆|−1)!

𝑀!
 

is the weight of all possible feature permutations and combinations. 

4.2 Visual Analyses of Feature Significance 

Given the excellent performance of the CatBoost model in concrete compressive strength 

prediction, this paper introduces the DeepExplainer framework for SHAP to improve the prediction 

accuracy. The importance of features is dissected by calculating and ranking each input feature's 

absolute mean SHAP values. As shown in Figure 6, the horizontal coordinates of the graph are 

different features, and the vertical coordinates are the mean absolute SHAP values. The results show 

that Age and Cement are the core features affecting the prediction of concrete compressive strength; 

features like Water and Blast Furnace Slag also have a role to play, while Superplasticizer, Coarse 

Aggregate, Fine Aggregate, and Fly Ash are less influential. When optimising the model, the focus 

should be on the key features while considering the combined effect of the other features. 
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Figure 6 Characteristic Importance Chart 

As shown in Figure 7, this SHAP value summary plot systematically demonstrates the effect of 

eight key features, such as Age, Cement, Water, Blast Furnace Slag, Fine Aggregate, Superplasticizer, 

Coarse Aggregate, and Fly Ash, on the concrete compressive strength of the SHAP value distribution 

characteristics. The SHAP values of each feature are distributed bilaterally and symmetrically along 

the baseline, where the left side of the baseline characterises the adverse effect of the feature on 

compressive strength and the right side characterises the positive impact. The model generates a 

scatter distribution of the corresponding feature values for each sample, and the gradient of the 

chromatogram varies from blue to red, which accurately maps the monotonous incremental law of 

the independent variable values. 

The three features, Age, Cement, and Water, showed significant feature importance through 

quantitative analysis of SHAP values. An in-depth analysis of the influence mechanism of each 

feature showed that: 

The Age eigenvalue is positively correlated with the SHAP value. The SHAP value shifts to the 

right when its eigenvalue increments, indicating that prolonging the curing age can significantly 

enhance the predicted value of concrete compressive strength. This phenomenon aligns with the 

theory of the time effect of the hydration reaction of cement. It verifies the age parameter's time-

varying characteristics in the strength development [10]. The impact of Cement eigenvalue on the 

output of the model exhibits a significant linear law, with the SHAP valuemonotonically increases 

with the increase of cement dosage, which coincides with the dominant role of cement cementitious 

material in the three-phase system of concrete, confirming that cement dosage is the core factor 

determining the 28d compressive strength. The Water feature exhibits a nonlinear response 

characteristic. The change of its eigenvalue shows a bidirectional moderating effect on the strength 

prediction: a moderate amount of water promotes the complete hydration of cement, and the SHAP 

value is positively shifted; however, the SHAP value is positively shifted when water-cement ratio 

exceeds. However, when the water-cement ratio exceeds the critical threshold, the excess free water 

leads to an increase in porosity, and the SHAP value turns to be negatively shifted, which is consistent 

with the theory of pore structure formation in concrete. 

Based on the above characteristic interaction law, it is suggested to establish a multi-objective 

constraint system in the optimisation of the mixing ratio to achieve the synergistic enhancement of 

the compressive strength and workability of the concrete by controlling the three-dimensional 

parameter space of the age of the curing period (≥28d), optimising the cement dosage (350-450 kg/m³) 

and adjusting the water-cement ratio (0.4-0.5) to provide a theoretical basis for the preparation of 

high-performance concrete. 
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Figure 7 Summary of eigenvalues 

The analysis of the Figure 8 reveals that Age and Blast Furnace Slag variables make a significant 

positive contribution to the prediction of concrete compressive strength, and Fine Aggregate, Cement, 

and Water variables make a significant negative contribution to the prediction of concrete 

compressive strength. 

 

Figure 8 Force Diagrams 

 

Figure 9 SHAP Dependency Diagram 

As shown in Figure 9, it can be seen that these features of Age, Cement, and Blast Furnace Slag 

contribute positively to the prediction of concrete compressive strength. At the same time, Water, 

Cement, Age, Fine Aggregate, Superplasticizer, Coarse Aggregate, and Fly Ash negatively contribute 
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to the prediction of concrete compressive strength. 

5. Conclusions and Outlook 

5.1 Conclusion 

This study focuses on the prediction of concrete compressive strength using machine learning, 

with the main conclusions as follows: 

The CatBoost model demonstrates excellent predictive performance. SHAP analysis indicates that 

Age and Cement are key contributing features. An increase in age promotes cement hydration and 

enhances structural density, showing a significant positive correlation with strength. As the core 

cementitious material, the amount and quality of cement directly determine strength development, 

making a prominent contribution to model predictions. 

Removing the Fly Ash feature increased the R² value in the validation set from 0.92 to 0.93, 

suggesting that this feature has a limited contribution and may interfere with prediction accuracy. 

In summary, age and cement are core factors in strength prediction, while fly ash plays a secondary 

role and poses a potential interference risk. The findings provide a basis for optimizing concrete mix 

proportions and selecting features for predictive models. 

5.2 Outlook 

The multi-feature prediction model based on the CatBoost algorithm performs well in the concrete 

compressive strength prediction study. However, there are still problems, such as a single channel of 

data collection, the limitation of dynamic monitoring due to the insufficient sample size, and the weak 

generalization ability of the model under complex working conditions. In the future, the Transformer 

architecture can be introduced to strengthen the time-varying feature analysis capability and capture 

the intensity evolution pattern using its sequence modelling advantage. This study can provide 

technical support for engineering quality control and optimizing building materials with theoretical 

innovation and practical value. 
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