Education, Science, Technology, Innovation and Life
Open Access
Sign In

Research Progress on Pathogenesis and Related Inflammatory Factors of Macular Edema Secondary to Retinal Vein Occlusion

Download as PDF

DOI: 10.23977/medsc.2024.050120 | Downloads: 4 | Views: 132

Author(s)

Yameng Di 1, Xiaoqin Lei 2

Affiliation(s)

1 Shaanxi University of Chinese Medicine, Xianyang, 712046, China
2 Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, China

Corresponding Author

Xiaoqin Lei

ABSTRACT

Retinal vein occlusion (RVO) is a relatively common retinal vascular disease characterized by vascular obstruction due to thrombus from various causes, resulting in retinal hemorrhage, fluid exudation, and varying degrees of retinal hypoxia and ischemia, and its secondary macular edema (ME) is the main cause of patients' impaired vision. Retinal vein occlusion secondary to macular edema is a pathophysiological process involving multiple factors, with a complex pathogenesis and many cytokines involved, resulting in an imbalance of fluids entering and transferring out of the retina, which leads to the formation of ME[1]. In recent years, with the development of molecular biology techniques, inflammatory factors associated with RVO-ME have become an important aspect in the study of RVO-ME. In this paper, we review the inflammatory factors associated with retinal vein occlusion secondary to macular edema and the pathogenesis of RVO-ME.

KEYWORDS

Retinal vein occlusion, macular edema, blood-retinal barrier, inflammatory factor, mechanism

CITE THIS PAPER

Yameng Di, Xiaoqin Lei, Research Progress on Pathogenesis and Related Inflammatory Factors of Macular Edema Secondary to Retinal Vein Occlusion. MEDS Clinical Medicine (2024) Vol. 5: 132-137. DOI: http://dx.doi.org/10.23977/medsc.2024.050120.

REFERENCES

[1] Hongfang Yong, Hui Qi, Yingjie Wu, et al. Research progress on the pathogenesis of macular edema secondary to retinal vein occlusion and the effect of macular edema on visual function [J].International Journal of Ophthalmology, 2019,19 (11) : 1888-1891.
[2] Xiaofeng Hao, Like Xie. Theoretical discussion on ' product ' in retinal vein occlusion [J].Chinese Journal of Ophthalmology of Traditional Chinese Medicine, 2018, 28 (04): 255-258. DOI: 10.13444 / j.cnki.zgzyykzz.2018.014.
[3] Kakihara S, Hirano T, Iesato Y, et al. Extended field imaging using swept-source optical coherence tomography angiography in retinal vein occlusion[J]. Japanese Journal of Ophthalmology, 2018, 62(3): 274-279. DOI:10.1007/ s10384-018-0590-9.
[4] Noma H, Yasuda K, Shimura M. Cytokines and Pathogenesis of Central Retinal Vein Occlusion[J]. Journal of Clinical Medicine, 2020, 9(11): 3457. DOI:10.3390/jcm9113457.
[5] Feng J, Zhao T, Zhang Y, et al. Differences in aqueous concentrations of cytokines in macular edema secondary to branch and central retinal vein occlusion[J]. PloS One, 2013, 8(7): e68149. DOI:10.1371/journal.pone.0068149.
[6] Yap Te, Husein S, Miralles DE IMPERIAL-OLLERO JA, et al. The efficacy of dexamethasone implants following anti-VEGF failure for macular oedema in retinal vein occlusion[J]. European Journal of Ophthalmology, 2021, 31(6): 3214-3222. DOI:10.1177/1120672120978355.
[7] Xun Liu, Lu Zhou. The efficacy of traditional Chinese medicine • integrated traditional Chinese and Western medicine in the treatment of central retinal vein occlusion with qi stagnation and blood stasis syndrome and its effect on inflammatory factors and vascular growth factors [J].Medical diet and health, 2022,20 ( 12 ) : 33-36 + 41.
[8] Jung SH, Kim KA, Sohn SW, et al. Association of aqueous humor cytokines with the development of retinal ischemia and recurrent macular edema in retinal vein occlusion[J]. Investigative Ophthalmology & Visual Science, 2014, 55(4): 2290-2296. DOI:10.1167/iovs.13-13587.
[9] Qi Jin, Xiaofeng Hao, Like Xie, et al. Research progress on the relationship between macular edema secondary to retinal vein occlusion and inflammation and its anti-inflammatory treatment [J].Shandong Medicine, 2020,60 ( 35 ) : 105-108.
[10] Yingqin Ni, Peiquan Zhao, Qing Chang, et al. Detection of interleukin-6 and hepatocyte growth factor in aqueous humor of patients with central retinal vein occlusion and macular edema [J].Chinese Journal of Practical Ophthalmology, 2006, (09) : 961-963.
[11] Fonollosa A, Garcia-Arumi J, Santos E, et al. Vitreous levels of interleukine-8 and monocyte chemoattractant protein-1 in macular oedema with branch retinal vein occlusion[J]. Eye (London, England), 2010, 24(7): 1284-1290. DOI:10.1038/eye.2009.340.
[12] Ruifang Yang, Hongyan Du. Research progress of cytokines and retinal vein occlusion [J]. International Journal of Ophthalmology, 2017, 17 (01): 72-75.
[13] Noma H, Funatsu H, Mimura T, et al. Soluble Vascular Endothelial Growth Factor Receptor-2 and Inflammatory Factors in Macular Edema with Branch Retinal Vein Occlusion[J]. American Journal of Ophthalmology, 2011, 152(4): 669-677.e1. DOI:10.1016/j.ajo.2011.04.006.
[14] Shui Li, Huajing Yang, Jiale Dai, et al. Research progress on the mechanism and risk factors of retinal vein occlusion [J].International Journal of Ophthalmology, 2024, (01):72-76.
[15] Ishida S, Usui T, Yamashiro K, et al. VEGF164 Is Proinflammatory in the Diabetic Retina[J]. Investigative Opthalmology & Visual Science, 2003, 44(5): 2155. DOI:10.1167/iovs.02-0807.
[16] Desjardins D M, Yates P W, Dahrouj M, et al. Progressive Early Breakdown of Retinal Pigment Epithelium Function in Hyperglycemic Rats[J]. Investigative Ophthalmology & Visual Science, 2016, 57(6): 2706-2713. DOI:10.1167/iovs.15-18397.
[17] Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: Beyond the surface[J]. Progress in Retinal and Eye Research, 2018, 63: 20-68. DOI:10.1016/j.preteyeres.2017.10.006.
[18] Cunha-Vaz J. The Blood-Retinal Barrier in the Management of Retinal Disease: EURETINA Award Lecture[J]. Ophthalmologica. Journal International D’ophtalmologie. International Journal of Ophthalmology. Zeitschrift Fur Augenheilkunde, 2017, 237(1): 1-10. DOI:10.1159/000455809.
[19] Amann B, Kleinwort K J H, Hirmer S, et al. Expression and Distribution Pattern of Aquaporin 4, 5 and 11 in Retinas of 15 Different Species [J]. International Journal of Molecular Sciences, 2016, 17(7): 1145. DOI:10.3390/ijms17071145.
[20] Rizzolo L J, Chen X, Weitzman M, et al. Analysis of the RPE transcriptome reveals dynamic changes during the development of the outer blood-retinal barrier [J]. Molecular Vision, 2007, 13: 1259-1273.

Downloads: 4545
Visits: 196779

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.