Application of Advanced Composites in Engineering
DOI: 10.23977/jmpd.2024.080215 | Downloads: 4 | Views: 298
Author(s)
Tianyi Yang 1, Ziliang Zhang 2
Affiliation(s)
1 College of Civil Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
2 School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
Corresponding Author
Tianyi YangABSTRACT
Among the current research focus, Graphene, porous materials, carbon nanotubes (CNTs), functionally gradient materials (FGM) and other advanced composite materials have been attractive for excellent physical, chemical, and mechanical properties. These materials have vital engineering significance in aerospace, vehicle engineering, etc., which can improve the stability and performance of the structure and provide insights for the development and application of new materials. In this paper, the research progress of these materials is reviewed, and the commonly used analytical methods are introduced, including static analysis, dynamic analysis, frequency analysis and active control strategy, so as to provide a review and prospects of advanced composites for researchers in related fields.
KEYWORDS
Advanced Composite Materials; Engineering Design; Applied ResearchCITE THIS PAPER
Tianyi Yang, Ziliang Zhang, Application of Advanced Composites in Engineering. Journal of Materials, Processing and Design (2024) Vol. 8: 125-131. DOI: http://dx.doi.org/10.23977/jmpd.2024.080215.
REFERENCES
[1] L. Wu, Y. Li, Z. Fu, and B.-L.Su, 'Hierarchically structured porous materials: synthesis strategies and applications in energy storage', Natl. Sci. Rev., vol. 7, no. 11, pp. 1667–1701, Nov. 2020, doi: 10.1093/nsr/nwaa183.
[2] S. F. A. Namin and R. Pilafkan, 'Vibration analysis of defective graphene sheets using nonlocal elasticity theory', Phys.E Low-Dimens. Syst. Nanostructures, vol. 93, pp. 257–264, Sep. 2017, doi: 10.1016/j.physe.2017.06.014.
[3] D. Shahsavari, B. Karami, and L.Li, 'Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model', Comptes Rendus Mécanique, vol. 346, no. 12, pp. 1216–1232, Sep. 2018, doi: 10.1016/j.crme.2018.08.011.
[4] F. Ebrahimi and A. Dabbagh, 'Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: Afinite-element study', Eur. Phys. J. Plus, vol. 134, no. 5, p. 225, May 2019, doi: 10.1140/epjp/i2019-12594-1.
[5] F. Ahmad et al., 'Graphene and its derivatives in medical applications: A comprehensive review', Synth. Met., vol. 304, p.117594, May 2024, doi: 10.1016/j.synthmet.2024.117594.
[6] G. Li-Yin, Y. Hao-Kun, C. Xuan, T. Wei-Dong, H. Xing-Ming, and L. Zhi-Quan, 'The development of porous metallic materials: a short review of fabrication, characteristics, and applications’, Phys. Scr., vol. 98, no. 12, p. 122001, Dec. 2023, doi: 10.1088/1402-4896/ad086c.
[7] H. P. Raturi, P. K. Karsh, and S. Dey, 'Random free vibration analysis of porous functionally graded cantilever plates', J.Braz. Soc. Mech. Sci. Eng., vol. 44, no. 12, p. 598, Dec. 2022, doi: 10.1007/s40430-022-03906-z.
[8] B. Vazic, B. E. Abali, H. Yang, and P.Newell, 'Mechanical analysis of heterogeneous materials with higher-order parameters', Eng. Comput., vol. 38, no. 6, pp.5051–5067, Dec. 2022, doi: 10.1007/s00366-021-01555-9.
[9] H. Chaabani, S. Mesmoudi, L. Boutahar, and K. E.Bikri, 'A high-order finite element continuation for buckling analysis of porous FGM plates', Eng. Struct., vol. 279, p.115597, Mar. 2023, doi: 10.1016/j.engstruct.2023.115597.
[10] S. Li, H. Zhang, S. Li, J. Wang, Q. Wang, and Z.Cheng, 'Advances in hierarchically porous materials: Fundamentals, preparation and applications', Renew. Sustain.Energy Rev., vol. 202, p. 114641, Sep. 2024, doi: 10.1016/j. rser.2024. 114641.
[11] X. Feng et al., 'A review: CNT/diamond composites prepared via CVD and its potential applications', Mater. Sci. Semicond.Process., vol. 186, p. 109008, Feb. 2025, doi: 10.1016/j.mssp.2024.109008.
[12] S. D. Singh and R. Sahoo, 'Comprehensive Analysis of Static, Buckling, and Free Vibration Behavior of Carbon Nanotube Reinforced Composite Plates on Pasternak's Elastic Foundation’, J. Vib. Eng.Technol, Sep. 2024, doi: 10.1007/s42417-024-01541-7.
[13] S. Zghal, A. Frikha, and F.Dammak, 'Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures', Appl. Math. Model., vol. 53, pp. 132–155, Jan. 2018, doi: 10.1016/j.apm.2017.08.021.
[14] R. Hołubowski, W. Glabisz, and K. Jarczewska, 'Transverse vibration analysis of a single-walled carbon nanotube under a random load action', Phys. E Low-Dimens. Syst. Nanostructures, vol. 109, pp. 242–247, May 2019, doi: 10.1016/j.physe.2019.01.030.
[15] M. N, S. K. V.P, S. M. S, R. G, V. S. K, and S. T.K, 'Carbon nanotubes and their properties-The review', Mater. Today Proc., vol. 47, pp. 4682–4685, 2021, doi: 10.1016/j.matpr.2021.05.543.
[16] M. Fattahi, C.-Y. Hsu, A. O. Ali, Z. H. Mahmoud, N. P. Dang, and E.Kianfar, 'Severe plastic deformation: Nanostructured materials, metal-based and polymer-based nanocomposites: A review',Heliyon, vol. 9, no. 12, p. e22559, Dec. 2023, doi: 10.1016/j.heliyon.2023.e22559.
[17] M. Yang, J. He, Q. Yue, and H.Tang, 'Dynamic instability and nonlinear response analysis of nanocomposite sandwich arches with viscoelastic cores',Commun. Nonlinear Sci. Numer. Simul, vol. 140, p. 108426, Jan. 2025, doi: 10.1016/j.cnsns.2024.108426.
[18] B. Saiah, M. Bachene, M. Guemana, Y. Chiker, and B. Attaf, 'On the free vibration behavior of nanocomposite laminated plates contained piece-wise functionally gradedgraphene-reinforced composite plies', Eng. Struct., vol. 253, p. 113784, Feb. 2022, doi: 10.1016/j.engstruct.2021.113784.
[19] S. Yadav, S. Liu, R. K. Singh, A. K. Sharma, and P. Rawat, 'A state-of-art review on functionally graded materials (FGMs) manufactured by 3D printing techniques: Advantages, existing challenges, and future scope', J. Manuf. Process., vol. 131, pp. 2051–2072, Dec. 2024, doi: 10.1016/j.jmapro.2024.10.026.
[20] M. Mishra, C. K. Srivastav, and S. Kumar, 'Free vibration analysis using dynamic stiffness method and first-order shear deformation theory for a functionally gradedmaterial plate', Mater. Today Proc., vol. 98, pp. 7–15, 2024, doi: 10.1016/j.matpr.2023.08.295.
[21] G. Nie and Z. Zhong, 'Dynamic analysis of multi-directional functionally graded annular plates', Appl. Math. Model., vol.34, no. 3, pp. 608–616, Mar. 2010, doi: 10.1016/j.apm.2009.06.009.
[22] Ş. D. Akbaş, 'Forced vibration analysis of functionally graded porous deep beams', Compos. Struct, vol. 186, pp.293–302, Feb. 2018, doi: 10.1016/j.compstruct.2017.12.013.
[23] Ankit Gupta & Mohammad Talha. (2015). Recent development in modeling and analysis of functionally graded materials and structures.Progress in Aerospace Sciences1-14.
[24] Lv Jun, Shao Minjie, Xue Yuting, Gao Xiaowei & Xie Zhaoqian. (2021). A New Strong Form Technique for Thermo-Electro-Mechanical Behaviors of Piezoelectric Solids. Coatings(6),687-698.
[25] Yu Zhang, Xuankai Guo, Yufan Wu, Yangyang Zhang, He Zhang & Chaofeng Lü. (2024). Nonlinear thermo-electro-mechanical responses and active control of functionally graded piezoelectric plates subjected tostrong electric fields. Thin-Walled Structures (PA), 112375-112386.
[26] Jiang Wei-Wu & Gao Xiao-Wei. (2023).Analysis of thermo-electro-mechanical dynamic behavior of piezoelectric structures based on zonal Galerkin free element method. European Journal of Mechanics / A Solids
[27] Alshenawy Reda, Sahmani Saeid, Safaei Babak, Elmoghazy Yasser, Al-Alwan Ali & Nuwairan Muneerah Al. (2023). Three-dimensional nonlinear stability analysis of axial-thermal-electrical loaded FG piezoelectric microshells via MKM straingradient formulations. Applied Mathematics and Computation
[28] Helong Wu, Sritawat Kitipornchai & Jie Yang. (2016). Thermo-electro-mechanical postbuckling of piezoelectric FG-CNTRC beams with geometric imperfections. Smart Materials and Structures (9),095022-095033.
[29] D.P. Zhang, Y.J. Lei & Z.B. Shen. (2017). Thermo-electro-mechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic foundation with variousboundary conditions. International Journal of Mechanical Sciences 1001-1015.
[30] Chen Liu, Liao-Liang Ke, Yue-Sheng Wang, Jie Yang & Sritawat Kitipornchai. (2013). Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Composite Structures167-174.
[31] Yu Zhang, Xuankai Guo, Yufan Wu, Yangyang Zhang, He Zhang & Chaofeng Lü. (2024). Vibration control of membrane structures by piezoelectric actuators considering piezoelectric nonlinearity under strongelectric fields. Engineering Structures 118413-118424.
[32] Wu, Y., Zhang, Y., Guo, X., Zhang, Y., Zhang, H., & Lü, C. (2024). Active Control of Cable Vibration Using Piezoelectric Actuators Considering Strong Electric Field Nonlinearity. Journal of Vibration Engineering & Technologies.
Downloads: | 3404 |
---|---|
Visits: | 182322 |
Sponsors, Associates, and Links
-
Forging and Forming
-
Composites and Nano Engineering
-
Metallic foams
-
Smart Structures, Materials and Systems
-
Chemistry and Physics of Polymers
-
Analytical Chemistry: A Journal
-
Modern Physical Chemistry Research
-
Inorganic Chemistry: A Journal
-
Organic Chemistry: A Journal
-
Progress in Materials Chemistry and Physics
-
Transactions on Industrial Catalysis
-
Fuels and Combustion
-
Casting, Welding and Solidification
-
Journal of Membrane Technology
-
Journal of Heat Treatment and Surface Engineering
-
Trends in Biochemical Engineering
-
Ceramic and Glass Technology
-
Transactions on Metals and Alloys
-
High Performance Structures and Materials
-
Rheology Letters
-
Plasticity Frontiers
-
Corrosion and Wear of Materials
-
Fluids, Heat and Mass Transfer
-
International Journal of Geochemistry
-
Diamond and Carbon Materials
-
Advances in Magnetism and Magnetic Materials
-
Advances in Fuel Cell
-
Journal of Biomaterials and Biomechanics