E2F Transcription Factor Family in Cell Cycle Regulation and Tumor Diseases: A Review of Research Progress
DOI: 10.23977/medsc.2026.070105 | Downloads: 1 | Views: 49
Author(s)
Kai Li 1, Weidong Yang 1, Dongqing Wang 1
Affiliation(s)
1 Department of Urology, Affiliated Hospital of Hebei University, Baoding, Hebei, China
Corresponding Author
Kai LiABSTRACT
The E2F transcription factor family serves as a pivotal group of regulators in cell cycle control, playing essential roles in cell proliferation, differentiation, apoptosis, and tumorigenesis. This review systematically presents the structural characteristics and functional classification of E2F family members, elucidating their molecular mechanisms in orchestrating cell cycle progression. Special emphasis is placed on the dual roles of different E2F subtypes in tumor initiation and progression, alongside the complex regulatory networks they participate in. Furthermore, by integrating the latest research findings, the review explores the potential of E2F factors as therapeutic targets and evaluates their prospects for clinical translation. Through a comprehensive synthesis of fundamental research and clinical data, this article aims to provide novel insights into the diagnosis and treatment strategies of E2F-related diseases, thereby advancing the understanding of their critical involvement in cancer biology and beyond.
KEYWORDS
E2F transcription factor, cell cycle regulation, tumorigenesis, molecular mechanisms, therapeutic targetCITE THIS PAPER
Kai Li, Weidong Yang, Dongqing Wang. E2F Transcription Factor Family in Cell Cycle Regulation and Tumor Diseases: A Review of Research Progress. MEDS Clinical Medicine (2026) Vol. 7: 33-43. DOI: http://dx.doi.org/10.23977/medsc.2026.070105.
REFERENCES
[1] Chan AB, Huber AL, Lamia KA. Cryptochromes modulate E2F family transcription factors. Sci Rep. 2020;10(1):4077. Published 2020 Mar 5. doi:10.1038/s41598-020-61087-y https://pubmed.ncbi.nlm.nih.gov/32139766/
[2] Li FF, Wang Y, Gu JH, Zhang YM, Liu FS, Ni ZH. E2F family play important roles in tumorigenesis. Yi Chuan. 2023;45(7):580-592. doi:10.16288/j.yczz.23-029 https://pubmed.ncbi.nlm.nih.gov/37503582/
[3] Sun M, Ji Y, Zhang G, Li Y, Dong F, Wu T. Posttranslational modifications of E2F family members in the physiological state and in cancer: Roles, mechanisms and therapeutic targets. Biomed Pharmacother. 178:117147. doi:10.1016/j.biopha.2024.117147 https://pubmed.ncbi.nlm.nih.gov/39053422/
[4] Wang Q, Liu J, Cheang I, et al. Comprehensive Analysis of the E2F Transcription Factor Family in Human Lung Adenocarcinoma. Int J Gen Med. 15:5973-5984. Published 2022 None. doi:10.2147/IJGM.S369582 https://pubmed.ncbi.nlm.nih.gov/35811776/
[5] Wang H, Wang X, Xu L, Zhang J, Cao H. Integrated analysis of the E2F transcription factors across cancer types. Oncol Rep. 2020;43(4):1133-1146. doi:10.3892/or.2020.7504 https://pubmed.ncbi.nlm.nih.gov/32323836/
[6] Shi J. Early 2-Factor Transcription Factors Associated with Progression and Recurrence in Bevacizumab-Responsive Subtypes of Glioblastoma. Cancers (Basel). 2024;16(14). Published 2024 Jul 14. doi:10.3390/cancers16142536 https://pubmed.ncbi.nlm.nih.gov/39061176/
[7] Zheng WJ, Li WQ, Peng Y, et al. E2Fs co-participate in cadmium stress response through activation of MSHs during the cell cycle. Front Plant Sci. 13:1068769. Published 2022 None. doi:10.3389/fpls.2022.1068769 https://pubmed.ncbi.nlm.nih.gov/36531377/
[8] Lee GE, Jeung D, Chen W, et al. MEKs/ERKs-mediated FBXO1/E2Fs interaction interference modulates G1/S cell cycle transition and cancer cell proliferation. Arch Pharm Res. 2023;46(1):44-58. doi:10.1007/s12272-023-01426-5 https://pubmed.ncbi.nlm.nih.gov/36607545/
[9] Villamar-Cruz O, Loza-Mejía MA, Vivar-Sierra A, et al. A PTP1B-Cdk3 Signaling Axis Promotes Cell Cycle Progression of Human Glioblastoma Cells through an Rb-E2F Dependent Pathway. Mol Cell Biol. 2023;43(12):631-649. doi:10.1080/10985549.2023.2273193 https://pubmed.ncbi.nlm.nih.gov/38014992/
[10] Emanuele MJ, Enrico TP, Mouery RD, Wasserman D, Nachum S, Tzur A. Complex Cartography: Regulation of E2F Transcription Factors by Cyclin F and Ubiquitin. Trends Cell Biol. 2020;30(8):640-652. doi:10.1016/j.tcb.2020.05.002 https://pubmed.ncbi.nlm.nih.gov/32513610/
[11] Militi S, Nibhani R, Jalali M, Pauklin S. RBL2-E2F-GCN5 guide cell fate decisions during tissue specification by regulating cell-cycle-dependent fluctuations of non-cell-autonomous signaling. Cell Rep. 2023;42(9):113146. doi:10.1016/j.celrep.2023.113146 https://pubmed.ncbi.nlm.nih.gov/37725511/
[12] Segeren HA, van Rijnberk LM, Moreno E, et al. Excessive E2F Transcription in Single Cancer Cells Precludes Transient Cell-Cycle Exit after DNA Damage. Cell Rep. 2020;33(9):108449. doi:10.1016/j.celrep.2020.108449 https://pubmed.ncbi.nlm.nih.gov/33264622/
[13] Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29(5):946-960. doi:10.1038/s41418-022-00988-z https://pubmed.ncbi.nlm.nih.gov/35361964/
[14] Zhou Y, Nakajima R, Shirasawa M, et al. Expanding Roles of the E2F-RB-p53 Pathway in Tumor Suppression. Biology (Basel). 2023;12(12). Published 2023 Dec 11. doi:10.3390/biology12121511 https://pubmed.ncbi.nlm.nih.gov/38132337/
[15] Zhang M, Kim S, Yang HW. Non-canonical pathway for Rb inactivation and external signaling coordinate cell-cycle entry without CDK4/6 activity. Nat Commun. 2023;14(1):7847. Published 2023 Nov 29. doi:10.1038/s41467-023-43716-y https://pubmed.ncbi.nlm.nih.gov/38030655/
[16] Manickavinayaham S, Dennehey BK, Johnson DG. Direct Regulation of DNA Repair by E2F and RB in Mammals and Plants: Core Function or Convergent Evolution? Cancers (Basel). 2021;13(5). Published 2021 Feb 24. doi:10.3390/cancers13050934 https://pubmed.ncbi.nlm.nih.gov/33668093/
[17] Xu H, Liang S, Hu J, Liu W, Dong Z, Wei S. Deltex E3 ubiquitin ligase 3 inhibits colorectal cancer cell growth and regulates cell cycle progression via upregulating E2F transcription factor 1. Mol Biol Rep. 2022;49(3):1661-1668. doi:10.1007/s11033-021-06916-7 https://pubmed.ncbi.nlm.nih.gov/35098394/
[18] Saadat KASM, Lestari W, Pratama E, et al. Distinct and overlapping roles of ARID3A and ARID3B in regulating E2F‑dependent transcription via direct binding to E2F target genes. Int J Oncol. 2021;58(4). doi:10.3892/ijo.2021.5192 https://pubmed.ncbi.nlm.nih.gov/33649863/
[19] Øvrebø JI, Bradley-Gill MR, Zielke N, et al. Translational control of E2f1 regulates the Drosophila cell cycle. Proc Natl Acad Sci U S A. 2022;119(4). doi:10.1073/pnas.2113704119 https://pubmed.ncbi.nlm.nih.gov/35074910/
[20] Chida K, Oshi M, Roy AM, et al. E2F target score is associated with cell proliferation and survival of patients with hepatocellular carcinoma. Surgery. 2023;174(2):307-314. doi:10.1016/j.surg.2023.04.030 https://pubmed.ncbi.nlm.nih.gov/37198038/
[21] Nikonezhad B, Lotfian M, Manavi N, Zamani A, Mahdevar M. Insights into the E2F target genes in breast cancer: associations of pathway genes with prognosis and immune cell filtration based on in silico and ex vivo analyses. Cancer Cell Int. 2025;25(1):203. Published 2025 Jun 6. doi:10.1186/s12935-025-03839-2 https://pubmed.ncbi.nlm.nih.gov/40481544/
[22] Xie D, Pei Q, Li J, Wan X, Ye T. Emerging Role of E2F Family in Cancer Stem Cells. Front Oncol. 11:723137. Published 2021 None. doi:10.3389/fonc.2021.723137 https://pubmed.ncbi.nlm.nih.gov/34476219/
[23] Ye WY, Lu HP, Li JD, et al. Clinical Implication of E2F Transcription Factor 1 in Hepatocellular Carcinoma Tissues. Cancer Biother Radiopharm. 2023;38(10):684-707. doi:10.1089/cbr.2020.4342 https://pubmed.ncbi.nlm.nih.gov/34619053/
[24] Lü Y, Zhang J, Li L, Li S, Yang Z. Carcinogenesis effects of E2F transcription factor 8 (E2F8) in hepatocellular carcinoma outcomes: an integrated bioinformatic report. Biosci Rep. 2020;40(2). doi:10.1042/BSR20193212 https://pubmed.ncbi.nlm.nih.gov/31990034/
[25] Pei X, Du E, Sheng Z, Du W. Rb family-independent activating E2F increases genome stability, promotes homologous recombination, and decreases non-homologous end joining. Mech Dev. 162:103607. doi:10.1016/j.mod.2020.103607 https://pubmed.ncbi.nlm.nih.gov/32217105/
[26] Yu H, Li Z, Wang M. Expression and prognostic role of E2F transcription factors in high-grade glioma. CNS Neurosci Ther. 2020;26(7):741-753. doi:10.1111/cns.13295 https://pubmed.ncbi.nlm.nih.gov/32064771/
[27] Li F, Yan J, Leng J, et al. Expression patterns of E2Fs identify tumor microenvironment features in human gastric cancer. PeerJ. 12:e16911. Published 2024 None. doi:10.7717/peerj.16911 https://pubmed.ncbi.nlm.nih.gov/38371373/
[28] Ahmed O, Masclef L, Iannantuono N, et al. O-GlcNAcylation of FOXK1 co-opts BAP1 to orchestrate the E2F pathway and promotes oncogenesis. Nat Commun. 2025;16(1):5959. Published 2025 Jul 1. doi:10.1038/s41467-025-61022-7 https://pubmed.ncbi.nlm.nih.gov/40593803/
[29] Tong Y, Li J, Peng M, et al. ATAD2 drives colorectal cancer progression by regulating TRIM25 expression via a positive feedback loop with E2F transcriptional factors. Biochem Biophys Res Commun. 594:146-152. doi:10.1016/j.bbrc.2022.01.036 https://pubmed.ncbi.nlm.nih.gov/35085891/
[30] Liu ZG, Su J, Liu H, et al. Comprehensive bioinformatics analysis of the E2F family in human clear cell renal cell carcinoma. Oncol Lett. 2022;24(4):351. Published 2022 Oct. doi:10.3892/ol.2022.13471 https://pubmed.ncbi.nlm.nih.gov/36168311/
[31] Luo L, Zhang G, Wu T, Wu G. Prognostic Value of E2F Transcription Factor Expression in Pancreatic Adenocarcinoma. Med Sci Monit. 27:e933443. Published 2021 Nov 20. doi:10.12659/MSM.933443 https://pubmed.ncbi.nlm.nih.gov/34799547/
[32] Moreno E, Pandit SK, Toussaint MJM, et al. Atypical E2Fs either Counteract or Cooperate with RB during Tumorigenesis Depending on Tissue Context. Cancers (Basel). 2021;13(9). Published 2021 Apr 23. doi:10.3390/cancers13092033 https://pubmed.ncbi.nlm.nih.gov/33922435/
[33] Seo J, Seong D, Lee SR, Oh DB, Song J. Post-Translational Regulation of ARF: Perspective in Cancer. Biomolecules. 2020;10(8). Published 2020 Aug 4. doi:10.3390/biom10081143 https://pubmed.ncbi.nlm.nih.gov/32759846/
[34] Kurayoshi K, Tanaka M, Nakajima R, et al. Utility of Tumor Suppressor E2F Target Gene Promoter Elements to Drive Gene Expression Specifically in Cancer Cells. Cells. 2025;14(24). Published 2025 Dec 9. doi:10.3390/cells14241953 https://pubmed.ncbi.nlm.nih.gov/41439972/
[35] Nakajima R, Deguchi R, Komori H, et al. The TFDP1 gene coding for DP1, the heterodimeric partner of the transcription factor E2F, is a target of deregulated E2F. Biochem Biophys Res Commun. 663:154-162. doi:10.1016/j.bbrc.2023.04.092 https://pubmed.ncbi.nlm.nih.gov/37141667/
[36] Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. Understanding Retinoblastoma Post-Translational Regulation for the Design of Targeted Cancer Therapies. Cancers (Basel). 2022;14(5). Published 2022 Feb 28. doi:10.3390/cancers14051265 https://pubmed.ncbi.nlm.nih.gov/35267571/
[37] Li F, Cai C, Wang F, et al. 20(S)-ginsenoside Rg3 suppresses gastric cancer cell proliferation by inhibiting E2F-DP dimerization. Phytomedicine. 141:156740. doi:10.1016/j.phymed.2025.156740 https://pubmed.ncbi.nlm.nih.gov/40252583/
[38] Singh S, Gleason CE, Fang M, et al. Targeting G1-S-checkpoint-compromised cancers with cyclin A/B RxL inhibitors. Nature. 2025;646(8085):734-745. doi:10.1038/s41586-025-09433-w https://pubmed.ncbi.nlm.nih.gov/40836083/
[39] Sun C, Wang J, Xia T, et al. Mitochondrion-Targeted NIR Therapeutic Agent Suppresses Melanoma by Inducing Apoptosis and Cell Cycle Arrest via E2F/Cyclin/CDK Pathway. Pharmaceuticals (Basel). 2022;15(12). Published 2022 Dec 19. doi:10.3390/ph15121589 https://pubmed.ncbi.nlm.nih.gov/36559040/
[40] Hu J, Shen J, Sun J. CDK4/RB/E2Fs axis as potential therapeutic target of endometrial cancer. Biomed Pharmacother. 125:109870. doi:10.1016/j.biopha.2020.109870 https://pubmed.ncbi.nlm.nih.gov/32032891/
[41] Yao Y, Deng S, Ng JF, et al. Unlocking the therapeutic potential of selective CDK7 and BRD4 inhibition against multiple myeloma cell growth. Haematologica. 2025;110(1):153-162. Published 2025 Jan 1. doi:10.3324/haematol.2024.285491 https://pubmed.ncbi.nlm.nih.gov/39049606/
[42] Glaviano A, Wander SA, Baird RD, et al. Mechanisms of sensitivity and resistance to CDK4/CDK6 inhibitors in hormone receptor-positive breast cancer treatment. Drug Resist Updat. 76:101103. doi:10.1016/j.drup.2024.101103 https://pubmed.ncbi.nlm.nih.gov/38943828/
[43] Wang W, Wang H, Liu X, et al. E2F2(E2F transcription factor 2) as a potential therapeutic target in meibomian gland carcinoma: evidence from functional and epigenetic studies. BMC Cancer. 2025;25(1):880. Published 2025 May 16. doi:10.1186/s12885-025-13833-6 https://pubmed.ncbi.nlm.nih.gov/40380087/
[44] Liu Z, Gao H, Li G, et al. Genome-wide CRISPR-based screen identifies E2F transcription factor 1 as a regulator and therapeutic target of aristolochic acid-induced nephrotoxicity. Environ Int. 195:109234. doi:10.1016/j.envint.2024.109234 https://pubmed.ncbi.nlm.nih.gov/39724681/
[45] Wander SA, O’Brien N, Litchfield LM, et al. Targeting CDK4 and 6 in Cancer Therapy: Emerging Preclinical Insights Related to Abemaciclib. Oncologist. 2022;27(10):811-821. doi:10.1093/oncolo/oyac138 https://pubmed.ncbi.nlm.nih.gov/35917168/
[46] Armand J, Kim S, Kim K, et al. Therapeutic benefits of maintaining CDK4/6 inhibitors and incorporating CDK2 inhibitors beyond progression in breast cancer. Elife. 14. Published 2025 Dec 29. doi:10.7554/eLife.104545 https://pubmed.ncbi.nlm.nih.gov/41459763/
[47] Chowdhury B, Garg S, Ni W, et al. Synergy between BRD9- and IKZF3-Targeting as a Therapeutic Strategy for Multiple Myeloma. Cancers (Basel). 2024;16(7). Published 2024 Mar 28. doi:10.3390/cancers16071319 https://pubmed.ncbi.nlm.nih.gov/38610997/
[48] Sloan SL, Brown F, Long M, et al. PRMT5 supports multiple oncogenic pathways in mantle cell lymphoma. Blood. 2023;142(10):887-902. doi:10.1182/blood.2022019419 https://pubmed.ncbi.nlm.nih.gov/37267517/
[49] Huang W, Zhang Y, Chen S, et al. Personalized immune subtypes based on machine learning predict response to checkpoint blockade in gastric cancer. Brief Bioinform. 2023;24(1). doi:10.1093/bib/bbac554 https://pubmed.ncbi.nlm.nih.gov/36572651/
[50] Cai D, Xu H, He S, Xu D, Li L. Precision prognostication in neuroblastomas via clinically validated E2F activity signatures. Front Immunol. 16:1612667. Published 2025 None. doi:10.3389/fimmu.2025.1612667 https://pubmed.ncbi.nlm.nih.gov/40599792/
[51] Yang Q, Vafaei S, Falahati A, et al. Decoding Bromodomain and Extra-Terminal Domain Protein-Mediated Epigenetic Mechanisms in Human Uterine Fibroids. Int J Mol Sci. 2025;26(24). Published 2025 Dec 17. doi:10.3390/ijms262412144 https://pubmed.ncbi.nlm.nih.gov/41465569/
[52] Quixabeira DCA, Pakola S, Jirovec E, et al. Boosting cytotoxicity of adoptive allogeneic NK cell therapy with an oncolytic adenovirus encoding a human vIL-2 cytokine for the treatment of human ovarian cancer. Cancer Gene Ther. 2023;30(12):1679-1690. doi:10.1038/s41417-023-00674-3 https://pubmed.ncbi.nlm.nih.gov/37949944/
| Downloads: | 10309 |
|---|---|
| Visits: | 786716 |
Sponsors, Associates, and Links
-
Journal of Neurobiology and Genetics
-
Medical Imaging and Nuclear Medicine
-
Bacterial Genetics and Ecology
-
Transactions on Cancer
-
Journal of Biophysics and Ecology
-
Journal of Animal Science and Veterinary
-
Academic Journal of Biochemistry and Molecular Biology
-
Transactions on Cell and Developmental Biology
-
Rehabilitation Engineering & Assistive Technology
-
Orthopaedics and Sports Medicine
-
Hematology and Stem Cell
-
Journal of Intelligent Informatics and Biomedical Engineering
-
MEDS Basic Medicine
-
MEDS Stomatology
-
MEDS Public Health and Preventive Medicine
-
MEDS Chinese Medicine
-
Journal of Enzyme Engineering
-
Advances in Industrial Pharmacy and Pharmaceutical Sciences
-
Bacteriology and Microbiology
-
Advances in Physiology and Pathophysiology
-
Journal of Vision and Ophthalmology
-
Frontiers of Obstetrics and Gynecology
-
Digestive Disease and Diabetes
-
Advances in Immunology and Vaccines
-
Nanomedicine and Drug Delivery
-
Cardiology and Vascular System
-
Pediatrics and Child Health
-
Journal of Reproductive Medicine and Contraception
-
Journal of Respiratory and Lung Disease
-
Journal of Bioinformatics and Biomedicine

Download as PDF