Education, Science, Technology, Innovation and Life
Open Access
Sign In

Microstructural and Mössbauer Studies of Samarium Doped Cu0.5Co0.5Fe2-xSmxO4 Nanoferrites

Download as PDF

DOI: 10.23977/pmcp.2022.030101 | Downloads: 21 | Views: 1459

Author(s)

Kaimin Su 1, Guangbai Yuan 1, Hu Yang 1, Yun He 2

Affiliation(s)

1 College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
2 Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guangxi Normal University, Guilin 541004, China

Corresponding Author

Yun He

ABSTRACT

Samarium substituted cobalt ferrite Cu0.5Co0.5Fe2-xSmxO4 (x=0~0.05) powders have been prepared by a sol-gel auto-combustion method. XRD results indicate that the production of a single cubic phase of ferrites. The lattice parameter decrease and the average crystallite size also decrease with the substitution Sm3+ ions. SEM shows that the ferrite powers are nanoparticles. Room temperature Mössbauer spectra of Cu0.5Co0.5Fe2-xSmxO4 is two normal Zeeman-split sextets, which display ferrimagnetic behavior. The saturation magnetization and residual magnetization all decrease with the incorporation of the Sm3+. But the coercivity shows no significant change when the content x≤0.03, but the coercivity abruptly increase up to 1128.9 Oe when x=0.05 with the Sm3+ ions doping.

KEYWORDS

Cu-Co Ferrite, Sol-gel method, Structure, Mössbauer, Magnetic

CITE THIS PAPER

Kaimin Su, Guangbai Yuan, Hu Yang, Yun He, Microstructural and Mössbauer Studies of Samarium Doped Cu0.5Co0.5Fe2-xSmxO4 Nanoferrites. Progress in Materials Chemistry and Physics (2022) Vol. 3: 1-8. DOI: http://dx.doi.org/10.23977/pmcp.2022.030101.

REFERENCES

[1] Nikolay Velinov, Kremena Koleva, et al. Nanosized Cu0.5Co0.5Fe2O4 ferrite as catalyst for methanol decomposition: Effect of preparation procedure. Catalysis Communications 32, (2013): 41-46.
[2] Hongzhe Chen, Shaogui Yang, et al. Efficient degradation of crystal violet in magnetic CuFe2O4 aqueous solution coupled with microwave radiation .Chemosphere, 89 (2012): 185-189.
[3] Ma G, Hao B, Li LC, Chen K, He Y, Qiao R, Li J, Ding Y.Preparation and Electromagnetic Properties of the Co0.6Cu0.16Ni0.24Fe2O4/ Multi-Walled Carbon Nanotube/ Polypyrrole Composites. Science of Advanced Materials, 6 (2014): 298-303. 
[4] Ameer Azam. Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles .Journal of Alloys and Compounds, 540 (2012): 145-153.
[5] A.A. Sattar, A.M. Samy. Effect of Sm substitution on the magneticand electrical properties of Cu-Zn ferrite .Journal of Materials Science, 37 (2002): 4499-4502.
[6] Rashad M, Mohamed R, El-Shall h. Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method. Journal of materials processing technology, 2008, 198 (1): 139-146.
[7] Guo L, Shen X, Song F, et al. Structure and magnetic property of CoFe2−xSmxO4 (x=0-0.2) nanofibers prepared by sol-gel route. Materials Chemistry and Physics, 2011, 129 (3): 943-947.
[8] Zhao L, Han Z, Yang H, et al. Magnetic properties of nanocrystalline Ni0.7Mn0.3Gd0.1Fe1.9O4 ferrite at low temperatures. Journal of Magnetism and Magnetic Materials, 2007, 309 (1): 11-14.
[9] Inbanathan S, Vaithyanathan V, Arout Chelvane J, et al. Mössbauer studies and enhanced electrical properties of R (R= Sm, Gd and Dy) doped Ni ferrite. Journal of Magnetism and Magnetic Materials, 2014, 353.41-46.
[10] Kumar S, Farea A, Batoo K M, et al. Mössbauer studies of Co0.5CdxFe2.5−xO4 ( ) ferrite. Physica B: Condensed Matter, 2008, 403 (19): 3604-3607.
[11] S.S. Ata-Allah. XRD and Mossbauer studies of crystallographic and magnetic transformations in synthesized Zn-substituted Cu-Ga-Fe compound .Journal of Solid State Chemistry 177 (2004) 4443-4450.
[12] Gabal, M.A., A.M. Asiri, and Y.M. AlAngari, On the structural and magnetic properties of La-substituted NiCuZn ferrites prepared using egg-white. Ceramics International, 2011. 37(7). 2625-2630.
[13] Al-Hilli M F, Li S, Kassim K S. Structural analysis, magnetic and electrical properties of samarium substituted lithium-nickel mixed ferrites. Journal of Magnetism and Magnetic Materials, 2012, 324 (5): 873-879.
[14] Gadkari A B, Shinde T J, Vasambekar p n. Magnetic properties of rare earth ion (Sm3+) added nanocrystalline Mg-Cd ferrites, prepared by oxalate co-precipitation method. Journal of Magnetism and Magnetic Materials, 2010, 322 (24): 3823-3827.
[15] Liu Y, Zhu X G, Zhang L, et al. Microstructure and magnetic properties of nanocrystalline Co1−xZnxFe2O4 ferrites. Materials research bulletin, 2012, 47 (12): 4174-4180.
[16] Jiang J, Yang Y-m, Li L C. Synthesis and magnetic properties of lanthanum-substituted lithium-nickel ferrites via a soft chemistry route. Physica B: Condensed Matter, 2007, 399 (2): 105-108.
[17] Daengsakul. S, Thomas.C, Mongkolkachit.C, Maensiri.S.Thermal Hydro-Decomposition Synthesis, Structural Characterization, and Magnetic Properties of La1-xSrxMn1-yCoyO3 Nanopowders. Science of Advanced Materials 5 (2013) 242-253. 
[18] Zhang, Y. and D. Wen, Infrared emission properties of RE (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) and Mn co-doped Co0.6Zn0.4Fe2O4 ferrites. Materials Chemistry and Physics, 2012. 131(3). 575-580.
[19] Lin J P, Guo Z P, WANG Y L, et al. Mössbauer Spectroscopy and Magnetic Properties of Bi0.8Ca0.2-xSrxFeO3 Nanoparticles by Sol-gel Method. Materials Science, 2019, 25(2): 135-140.
[20] Fang Y, Yang X X, Qing L I N, et al. Microstructure and Magnetic Studies of La1-xSrxFeO3 Nano Particles Fabricated by the Citrate Sol-Gel Method. Materials Science, 2019, 25(3): 231-237.
[21] Nikumbh a, Pawar r, Nighot d, et al. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. Journal of Magnetism and Magnetic Materials, 2014, 355 201-209.
[22] Qing Lin, Qingmei Zhang, Xinlong Dong, Guodong Tang, Yun He, Magnetic and Mössbauer spectra observed for mixed-metal magnets NBu4FeIInMAII1−n [FeIII(OX)3](MA=Mn, Fe) .Hyperfine Interact (2013) 219:77-82 .
[23] Lin Q, Xu J, Yang F, et al. The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties. Journal of Applied Biomaterials & Functional Materials, 2018, 16(1_suppl): 17-25.

Downloads: 105
Visits: 7792

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.