Education, Science, Technology, Innovation and Life
Open Access
Sign In

Anti-vascular endothelial growth factor (VEGF) herbal medicine associated with non-small cell lung cancer

Download as PDF

DOI: 10.23977/medsc.2022.030212 | Downloads: 26 | Views: 824

Author(s)

Tingwen Jian 1, Yaohui Li 2

Affiliation(s)

1 Shaanxi University of Traditional Chinese Medicine, Shaanxi, Xianyang, 712046, China
2 Shaanxi Provincial Hospital of Traditional Chinese Medicine, Shaanxi Xi'an, 710003, China

Corresponding Author

Tingwen Jian

ABSTRACT

At present, anti-vascular growth factor drugs are used in cancer treatment to achieve certain efficacy. Based on the current effectiveness of traditional Chinese medicine and extracts for cancer treatment and related research, we therefore summarize the non-small cell lung cancer-related traditional Chinese medicines with anti-angiogenic factors, in order to play the role of traditional Chinese medicine in the treatment of non-small cell lung cancer treatment.

KEYWORDS

Non-small cell lung cancer, anti-vascular endothelial growth factor, traditional Chinese medicine

CITE THIS PAPER

Tingwen Jian, Yaohui Li, Anti-vascular endothelial growth factor (VEGF) herbal medicine associated with non-small cell lung cancer. MEDS Clinical Medicine (2022) Vol. 3: 64-73. DOI: http://dx.doi.org/10.23977/medsc.2022.030212.

REFERENCES

[1] Martino, E. C., Misso, G., Pastina, P., Costantini, S., Vanni, F., & Gandolfo, C., et al. (2016). Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell Death Discovery, 2, 16025.
[2] Katayama, D., Yanagawa, M., Matsunaga, K., Watabe, H., & Tomiyama, N.. (2021). Greater reductions in blood flow after anti-angiogenic treatment in non-small cell lung cancer patients are associated with shorter progression-free survival. Scientific Reports, 11(1).
[3] Ascha, M. S., Wang, J. F., Kumthekar, P., Sloan, A. E., Kruchko, C., & Barnholtz-Sloan, J. S.. Bevacizumab for the treatment of non-small cell lung cancer patients with synchronous brain metastases. Scientific Reports.
[4] Hafner, S.. (2021). First-line anti-vegf plus egfr-tki in egfr-mutant nsclc: adding the artemis trial to the puzzle of current evidence. Signal Transduction and Targeted Therapy, 6(1).
[5] Braa, I., & Tabernero, J.. (2010). Cardiotoxicity. Annals of Oncology, 21 Suppl 7(7), vii173-9.
[6] Stone, J. B., & Deangelis, L. M.. (2015). Cancer-treatment-induced neurotoxicity--focus on newer treatments. Nature Reviews Clinical Oncology.
[7] Herrmann, J. (2020). Vascular toxic effects of cancer therapies. Nature Reviews Cardiology, 17(Suppl. 2), 1-20.
[8] Touyz, R. M., & Herrmann, J.. (2018). Cardiotoxicity with vascular endothelial growth factor inhibitor therapy. Npj Precision Oncology, 2(1), 13.
[9] Zhang, T., Yang, Y., Cheng, G., Chen, P., & Bi, N.. (2020). Tracheoesophageal fistula associated with bevacizumab after thoracic radiotherapy in non-small cell lung cancer: a case report. Medicine, 99(17), e19878.
[10] Ara, M., & Pastushenko, E.. (2014). Antiangiogenic agents and the skin: cutaneous adverse effects of sorafenib, sunitinib, and bevacizumab. Actas Dermo-Sifiliográficas, 105(10), 900-912.
[11] Cheng, Z., Ning, W., Tan, H. Y., Wei, G., Sha, L., & Feng, Y.. (2018). Targeting vegf/vegfrs pathway in the antiangiogenic treatment of human cancers by traditional chinese medicine. Integrative Cancer Therapies, 1534735418775828.
[12] Son B, Jun S Y, Seo H J, et al. Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer [J]. Scientific Reports, 2016, 6(1): 21986.
[13] Son B, Jun S Y, Seo H J, et al. Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer[J]. Scientific Reports, 2016, 6(1): 21986.
[14] The small molecule chemical compound cinobufotalin attenuates resistance to ddp by inducing enkur expression to suppress myh9-mediated c-myc deubiquitination in lung adenocarcinoma. Acta Pharmacologica Sinica.
[15] Jiao L, Dong C, Liu J, et al. Effects of Chinese Medicine as Adjunct Medication for Adjuvant Chemotherapy Treatments of Non-Small Cell Lung Cancer Patients [J]. Scientific Reports, 2017, 7:46524.
[16] Fagiani, E. & Christofori, G. Angiopoietins in angiogenesis. Cancer Lett. 328, 18–26 (2013). Zheng, X. et al. The regulation of cytokine signaling by retinal determination gene network pathway in cancer. Onco Targets Ther. 11, 6479–6487 (2018).
[17] O’Byrne, K J, Koukourakis, M I, Giatromanolaki, & Cox, et al. (2000). Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer. British Journal of Cancer.
[18] Song, J. W., Long, J. Y., Xie, L., Zhang, L. L., & XF Li. (2020). Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of scutellaria baicalensis georgi. and its probably potential therapeutic effects on covid-19: a review. Chinese Medicine, 15(1), 102.
[19] Xiang, L., Gao, Y., Chen, S., Sun, J., & Meng, X.. (2021). Therapeutic potential of scutellaria baicalensis georgi in lung cancer therapy. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 95, 153727.
[20] Yan, Y., Yao, L., Sun, H., Pang, S., & Xu, S.. (2020). Effects of wogonoside on invasion and migration of lung cancer a549 cells and angiogenesis in xenograft tumors of nude mice. Journal of Thoracic Disease, 12(4), 1552-1560.
[21] Cathcart, M.-C., Useckaite, Z., Drakeford, C., Semik, V., Lysaght, J., Gately, K., O’Byrne, K.J., Pidgeon, G.P., 2016. Anti-cancer effects of baicalein in non-small cell lung cancer in vitro and in vivo. BMC Cancer 16, 707. 
[22] Liu JJ, Huang TS, Cheng WF, Lu FJ. Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation. Int J Cancer. 2003; 106: 559–65.
[23] Zhao, Z., Liu, B., Sun, J., Lu, L., Liu, L., & Qiu, J., et al. (2019). Baicalein inhibits orthotopic human non-small cell lung cancer xenografts via src/id1 pathway. Evidence-based Complementary and Alternative Medicine, 2019, 1-7.
[24] Zhu RJ, Shen XL, Dai LL, et al. Total aglycones from Marsdenia tenacissima increases antitumor efficacy of paclitaxel in nude mice [J]. Molecules, 2014, 19(9): 13965-13975. 
[25] Wang, P., et al. "Marsdenia tenacissima: A Review of Traditional Uses, Phytochemistry and Pharmacology." The American Journal of Chinese Medicine 46.7(2018): 1-32.
[26] Zhang, H., et al. "Clinical value of Tongguanteng (Radix seu Herba Marsdeniae Tenacissimae) extract combined with chemotherapy in the treatment of advanced non-small cell lung cancer: a Meta-analysis." Journal of Traditional Chinese Medicine 3(2016): 10.
[27] "Marsdeniae tenacissimae extract (MTE) suppresses cell proliferation by attenuating VEGF/VEGFR2 interactions and promotes apoptosis through regulating PKC pathway in human umbilical vein endothelial cells." Chinese Journal of Natural Medicines 14.12(2016): 9.
[28] Liu, Pei, et al. "A Combined Phytochemistry and Network Pharmacology Approach to Reveal Potential Anti-NSCLC Effective Substances and Mechanisms in Marsdenia tenacissima (Roxb.) Moon (Stem)." Frontiers in Pharmacology 12(2021).
[29] He, et al. "Nuciferine, extracted from Nelumbo nucifera Gaertn, inhibits tumor-promoting effect of nicotine involving Wnt/beta-catenin signaling in non-small cell lung cancer." Journal of Ethnopharmacology an Interdisciplinary Journal Devoted to Bioscientific Research on Indigenous Drugs (2015).
[30] "Nuciferine prevents bone loss by disrupting multinucleated osteoclast formation and promoting type H vessel formation." The FASEB Journal 34.3 (2020).
[31] Fan, Jiemin, et al. "Nuciferine prevents hepatic steatosis associated with improving intestinal mucosal integrity, mucus-related microbiota and inhibiting TLR4/MyD88/NF-κB pathway in high-fat induced rats.".
[32] Tao, H., Wu, X., Cao, J., Peng, Y., Wang, A., & Pei, J., et al. (2019). Rhodiola species: a comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Medicinal Research Reviews.
[33] Dongming, Zhao, Xinyi, Sun, Shujie, & Lv, et al. (2019). Salidroside attenuates oxidized low density lipoprotein induced endothelial cell injury via promotion of the ampk/sirt1 pathway. International Journal of Molecular Medicine.
[34] Zhang, X., Zhu, J., Yan, J., Xiao, Y., & Wang, Y.. (2020). Systems pharmacology unravels the synergic target space and therapeutic potential of rhodiola rosea l. for non-small cell lung cancer. Phytomedicine, 79, 153326.
[35] Lei, L., Hou, X., Xu, R., Chang, L., & Tu, M.. (2017). Research review on the pharmacological effects of astragaloside iv. Fundamental & Clinical Pharmacology, 31.
[36] Wu, C. Y., Ke, Y., Zeng, Y. F., Zhang, Y. W., & Yu, H. J.. (2017). Anticancer activity of astragalus polysaccharide in human non-small cell lung cancer cells. Cancer Cell International, 17(1), 115.
[37] He, C. S., Liu, Y. C., Xu, Z. P., Dai, P. C., Chen, X. W., & Jin, D. H.. (2016). Astragaloside iv enhances cisplatin chemosensitivity in non-small cell lung cancer cells through inhibition of b7-h3. Cellular Physiology & Biochemistry International Journal of Experimental Cellular Physiology Biochemistry & Pharmacology, 40(5), 1221.
[38] Dai, P. C., Liu, D. L., Zhang, L., Ye, J., Wang, Q., & Zhang, H. W., et al. (2017). Astragaloside iv sensitizes non–small cell lung cancer cells to gefitinib potentially via regulation of sirt6. Tumour Biology the Journal of the International Society for Oncodevelopmental Biology & Medicine, 39(4), 1010428317697555.
[39] Zhu, J. S., Halpern, G. M., & Jones, K.. (1998). The scientific rediscovery of an ancient chinese herbal medicine: cordyceps sinensis: part i. The Journal of Alternative and Complementary Medicine, 4(3), 289-303.
[40] Ji, N. F., Yao, L. S., Li, Y., He, W., Yi, K. S., & Huang, M.. (2011). Polysaccharide of cordyceps sinensis enhances cisplatin cytotoxicity in non-small cell lung cancer h157 cell line. Integrative Cancer Therapies, 10(4), 359-367.
[41] Huo, X., Liu, C., Bai, X., Li, W., Jing, L., & Hu, X., et al. (2017). Correction: aqueous extract of cordyceps sinensis potentiates the antitumor effect of ddp and attenuates therapy-associated toxicity in non-small cell lung cancer via iκbα/nfκb and akt/mmp2/mmp9 pathways. RSC Advances, 7.
[42] Luo, L., Ran, R., J Yao, Zhang, F., Xing, M., & Jin, M., et al. (2019). Se-enriched cordyceps militaris inhibits cell proliferation, induces cell apoptosis, and causes g2/m phase arrest in human non-small cell lung cancer cells. OncoTargets and therapy, 12.
[43] Ana, B., Isabel, F., Marina, S., Leo, V. G., Diana, S., & Vasconcelos, M., et al. (2015). Cordyceps militaris (l.) link fruiting body reduces the growth of a non-small cell lung cancer cell line by increasing cellular levels of p53 and p21. Molecules, 20(8), 13927-40.
[44] Ginsenoside Rg3 Inhibits Migration and Invasion of Nasopharyngeal Carcinoma Cells and Suppresses Epithelial Mesenchymal Transition 2015.
[45] Singh, P., Kim, Y. J., Wang, C., Mathiyalagan, R. & Yang, D. C. The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif. Cells. Nanomed. Biotechnol. 44, 1150–1157 (2016).
[46] Liu, J. et al. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation. J. Pharm. Biomed. Anal. 135, 176–185 (2017).
[47] Li, H., Huang, N., Zhu, W., Wu, J., Yang, X., & Teng, W., et al. (2018). Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside rh2. Bmc Cancer, 18(1), 579.
[48] Tian, L., Shen, D., Li, X., Shan, X., Wang, X., & Yan, Q., et al. (2016). Ginsenoside rg3 inhibits epithelial-mesenchymal transition (emt) and invasion of lung cancer by down-regulating fut4. Oncotarget, 7(2).
[49] Jae-Hwan, Kwak, Jae, Sung, & Pyo. (2015). Characterization of apoptosis induced by ginsenosides in human lung cancer cells. Analytical Letters.
[50] Zhao, M., Wang, D. D., Che, Y., Wu, M. Q., Li, Q. R., & Shao, C., et al. (2017). Ginsenosides synergize with mitomycin c in combating human non-small cell lung cancer by repressing rad51-mediated DNA repair. Acta Pharmacologica Sinica.
[51] Li, Z. H., Yu, D., Huang, N. N., Wu, J. K., & Wang, X. J.. (2021). Immunoregulatory mechanism studies of ginseng leaves on lung cancer based on network pharmacology and molecular docking. Scientific Reports, 11(1), 18201.
[52] (2015). Myricanol induces apoptotic cell death and anti-tumor activity in non-small cell lung carcinoma in vivo. International journal of molecular sciences, 16(2), 2717-31.
[53] Wang, Y. L., Zhang, Y., Liu, T., & Cui, J.. (2021). 3,5-dimethoxy-4-hydroxy myricanol attenuated oxidative stress-induced toxicity on cardiomyoblast cells. Human & Experimental Toxicology, 096032712199797.
[54] Dai, G. H., Chen, X., Ren, Z. M., Dai, C. J., & Chai, K. Q.. (2020). Myricanol 5-fluorobenzyloxy ether regulation of survivin pathway inhibits human lung adenocarcinoma a549 cells growth in vitro. BMC Complementary Medicine and Therapies, 20(1), 269.
[55] Dai, G. H., Chen, X., Ren, Z. M., Dai, C. J., & Chai, K. Q.. (2020). Myricanol 5-fluorobenzyloxy ether regulation of survivin pathway inhibits human lung adenocarcinoma a549 cells growth in vitro. BMC Complementary Medicine and Therapies, 20(1), 269.
[56] Shi, P., Geng, Q., Chen, L., Du, T., & Yao, H.. (2020). Schisandra chinensis bee pollen's chemical profiles and protective effect against h2o2-induced apoptosis in h9c2 cardiomyocytes. BMC Complementary Medicine and Therapies, 20(1), 274.
[57] Song, Y., Shan, B., Zeng, S., Zhang, J., & Su, D.. (2021). Raw and wine processed schisandra chinensis attenuate anxiety like behavior via modulating gut microbiota and lipid metabolism pathway. Journal of Ethnopharmacology, 266, 113426.
[58] Ntm, A., Vvd, B., Httl, A., Btma, A., Nhh, B., & Bhtb, C., et al. (2020). Chemical constituents from schisandra sphenanthera and their cytotoxic activity - sciencedirect. Natural Product Research.
[59] Lv, X. J., Zhao, L. J., Hao, Y. Q., Su, Z. Z., & Zhang, J.. (2015). Schisandrin b inhibits the proliferation of human lung adenocarcinoma a549 cells by inducing cycle arrest and apoptosis. International Journal of Clinical and Experimental Medicine, 8(5), 6926-6936.
[60] Xian, H., Feng, W., & Zhang, J.. (2019). Schizandrin a enhances the efficacy of gefitinib by suppressing ikkβ/nf-κb signaling in non-small cell lung cancer. European Journal of Pharmacology.
[61] Zhang, Y., He, L., Meng, L., Luo, W., & Xu, X.. (2008). Suppression of tumor-induced angiogenesis by taspine isolated from radix et rhizoma leonticis and its mechanism of action in vitro. Cancer Letters, 262(1), 103-113.
[62] Wang, S., Yan, Y., Cheng, Z., Hu, Y., & Liu, T. (2018). Sotetsuflavone suppresses invasion and metastasis in non-small-cell lung cancer a549 cells by reversing emt via the tnf-α/nf-κb and pi3k/akt signaling pathway. Cell Death Discovery, 4(1).
[63] Li, Y. Y., Feng, J., Zhang, X. L., Li, M. Q., & Cui, Y. Y. (2016). Effects of Pinus massoniana bark extract on the invasion capability of hela cells. Journal of Functional Foods, 24, 520-526.
[64] Yu, L., Zhao, M., Jin, S. W., Cui, C., Bao, Y., & Jiang, Y., et al. (2008). Antioxidant, immunomodulatory and anti-breast cancer activities of phenolic extract from pine (pinus massoniana lamb) bark. INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES, 1(1), 122-128.
[65] Mao, P., Zhang, E., Chen, Y., Liu, L., Rong, D., & Liu, Q., et al. (2017). Pinus massoniana bark extract inhibits migration of the lung cancer a549 cell line. Oncology Letters.
[66] Tumor-derived exosomal mir-3157-3p promotes angiogenesis, vascular permeability and metastasis by targeting timp/klf2 in non-small cell lung cancer. Cell death & disease, 12(9), 840.
[67] Pan, B., Shen, J., Cao, J., Zhou, Y., Shang, L., & Jin, S., et al. (2015). Interleukin-17 promotes angiogenesis by stimulating vegf production of cancer cells via the stat3/giv signaling pathway in non-small-cell lung cancer. Scientific Reports, 5, 16053.
[68] Cho, S. H., Yoon, S., Lee, D. H., Kim, S. W., & Kim, K. (2021). Recurrence-associated gene signature in patients with stage i non-small-cell lung cancer. Scientific Reports.
[69] Zhao, B., Wu, M., Hu, Z., Ma, Y., & Mo, W. (2020). Thrombin is a therapeutic target for non-small-cell lung cancer to inhibit vasculogenic mimicry formation. Signal Transduction and Targeted Therapy, 5(1), 117.
[70] Liskova, A., Koklesova, L., Samec, M., Smejkal, K., & Kubatka, P. (2020). Flavonoids in cancer metastasis. Cancers, 12(1498), 1498.

Downloads: 4408
Visits: 193772

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.