Education, Science, Technology, Innovation and Life
Open Access
Sign In

The Analysis Meteorological Satellite Software Based on Principal Component

Download as PDF

DOI: 10.23977/jeis.2016.11004 | Downloads: 40 | Views: 5242


Lizi Xie 1, Manyun Lin 1, Xiangang Zhao 1, Lan Wei 1, Cunqun Fan 1


1 National Satellite Meteorological Centre, China Meteorological Administration, Beijing, China

Corresponding Author

Cunqun Fan


How to provide reasonable hardware resources and improve the efficiency of soft-ware is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Simulation results show that the proposed method can optimize the allocation of software hardware resources and improve the efficiency of software operation.


meteorological satellite software; principal component; feature data.


Manyun, L. , Xiangang, Z. , Cunqun, F. , Lizi, X. and Lan, W. (2016) The Analysis Meteorological Satellite Software Based on Principal Component. Journal of Electronics and Information Science (2016) 1: 17-21.


[1] CHEN Zhuang, LUO Chengcheng. Application of an improved K-means algorithm in anomaly detection [J]. Journal of Chongqing University of Technology: Natural Science, 2015 (5): 66-70
[2] Yong S U, Liu Q, Peng L M, et al. Application of Principal Components Analysis and Cluster Analysis in Evaluation of Blending Module[J]. Tobacco Science & Technology, 2005,30 (2): 365-369.
[3] LI Zuo-Yong, DING Jing, PENG Li-Hong. Principles and methods of environmental qual-ity assessment [M]. Chemical Industry Press, 2004,5 (1)
[4] JIA Rui-yu, SONG Jian-lin.K-means optimal cluster number determination method based on clustering center optimization [J] .Microelectronics & Computer, 2016,33 (5): 62-66
[5] YIN Cheng-xiang ZHANG Hong-jun ZHANG Rui QI Xiu-li WANG Bin An Improved K-Means Algorithm [J] .Computer Technology and Development, 2014,24 (10): 30-33. 
[6]  Kuang F, Zhang S, Jin Z, et al. A novel SVM by combining kernel principal component analysis and improved chaotic particle swarm optimization for intrusion detection[J]. Soft Computing, 2015, 19(5):1187-1199.
[7] Rocha H, Li W, Hahn A. Principal Component Regression for Fitting Wing Weight Data of Subsonic Transports[J]. Journal of Aircraft, 2015, 43(6):1925-1936.
[8] Liu W, Zhang H, Tao D, et al. Large-scale paralleled sparse principal component analysis[J]. Multimedia Tools and Applications, 2016, 75(3):1-73.

Downloads: 4705
Visits: 214447

Sponsors, Associates, and Links

All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.