Education, Science, Technology, Innovation and Life
Open Access
Sign In

Opioids Modulate the Mitochondrial Membrane Permeability Transition Pore to Improve Myocardial Ischemia-Reperfusion Injury Research Progress

Download as PDF

DOI: 10.23977/medsc.2022.030407 | Downloads: 15 | Views: 520

Author(s)

Jiashuo Li 1, Shu Song 1, Yibo Wang 1, Tianxiang Chen 1, Lili Gu 1, Mengyuan Tao 1, Shuhui Sun 1, Jinkun Xi 1, Wenji Liang 1, Xiaohan Yu 1, Zhumei Sun 1

Affiliation(s)

1 School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei, 063000, China

Corresponding Author

Zhumei Sun

ABSTRACT

With the gradual improvement of cardiac surgery technology, the promotion and application of coronary artery thrombolysis, percutaneous coronary intraluminal plasty, cardiac surgery extracorporeal circulation and other technologies, myocardial ischemia and reperfusion injury, have attracted more and more attention from researchers. Myocardium ischemia-reperfusion injury (MIRI) is a more serious myocardial injury caused by reperfusion of ischemic myocardium, and there is often no effective treatment in the clinic, so how to avoid or alleviate MIRI has become a research hotspot. Studies have shown that mitochondria play a crucial role in myocardial protection, with mitochondrial permeability transition pores (mPTP) playing an essential role in MIRI. mPTP regulates mitochondrial membrane permeability to maintain mitochondrial stability, and opening mPTP will further worsen MIRI. Opioids such as Morphine, Fentanyl, Remifentanil, etc., are often used as analgesics in the clinic, but at present, they have been increasingly used in patients with MIRI injury. Opioids play a significant role in regulating mPTP opening, etc., and can regulate mPTP opening in various ways to inhibit MIRI effectively. This paper reviews the molecular mechanism and research progress of the occurrence and development of MIRI in recent years from many aspects further discusses the molecular mechanism and pathway of opioid regulation and intends to provide new ideas and theoretical basis for the prevention and treatment of MIRI.

KEYWORDS

Ischemia-reperfusion injury, mitochondrial membrane permeability transition pore, opioids, myocardium, Morphine, Fentanyl, Remifentanil

CITE THIS PAPER

Jiashuo Li, Shu Song, Yibo Wang, Tianxiang Chen, Lili Gu, Mengyuan Tao, Shuhui Sun, Jinkun Xi, Wenji Liang, Xiaohan Yu, Zhumei Sun, Opioids Modulate the Mitochondrial Membrane Permeability Transition Pore to Improve Myocardial Ischemia-Reperfusion Injury Research Progress. MEDS Clinical Medicine (2022) Vol. 3: 43-52. DOI: http://dx.doi.org/10.23977/medsc.2022.030407.

REFERENCES

[1] China Cardiovascular Health and Disease Report 2020 Writing Group. Overview of the China Cardiovascular Health and Disease Report 2020. China Cardiovascular Disease Research July 2021, Vol. 19, No. 7 2021.
[2] Timmers L, Pasterkamp G, de Hoog VC, et al. (2012) The innate immune response in reperfused myocardium. Cardiovasc Res. 94 (2):276-83. 
[3] Morciano G, Naumova N, Koprowski P, et al. (2021) The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc. 96 (6):2489-2521. 
[4] Buja LM. (2022) Pathobiology of Myocardial Ischemia and Reperfusion Injury: Models, Modes, Molecular Mechanisms, Modulation and Clinical Applications. Cardiol Rev. 
[5] Tu RH, Wang DX, Zhong GQ, et al. (2021) New targets of morphine postconditioning protection of the myocardium in ischemia/reperfusion injury: Involvement of HSP90/Akt and C5a/NF-κB. Open Med (Wars). 16 (1):1552-1563.
[6] Rawal H, Patel BM. (2018) Opioids in Cardiovascular Disease: Therapeutic Options. Cardiovasc Pharmacol Ther. 23 (4):279-291.
[7] Wu LN, Hu R, Yu JM. (2021) Morphine and myocardial ischaemia-reperfusion. Pharmacol. 891: 173683. 
[8] Tong Y, Duan S, Yang L, Zhang GY, Chen P. (2020) The role of mitochondrial dysfunction in the pathogenesis of myocardial ischemia-reperfusion injury and the progress of targeted therapy research. Shandong Medicine, 60(21):103-107.
[9] Petrosillo G, Di Venosa N, Moro N, et al. (2011) In vivo hyperoxic preconditioning protects against rat-heart ischemia/reperfusion injury by inhibiting mitochondrial permeability transition pore opening and cytochrome c release. Free Radic Biol Med. 50 (3):477-83. 
[10] Bonora M, Wieckowski MR, Chinopoulos C, et al. (2015) Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene. 34 (12):1475-86.
[11] Baines CP, Kaiser RA, Sheiko T, et al. (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol. 9 (5):550-5. 
[12] Chiara F, Castellaro D, Marin O, et al. (2008) Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One. 3 (3): e1852.
[13] Kokoszka JE, Waymire KG, Levy SE, et al. (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 427 (6973):461-5. 
[14] Banas CP, Molkentin JD. (2009) Adenine nuclootkie tranelocase-1 indbaceaeaoioa yoeytn death thoough upregralaton of the pco-spoptotic proteinBax. Mol Cell Canbtol, 46(6):969- 977.
[15] Abdallah Y, Kasseckert SA, Iraqi W, et al. (2011) Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. Cell Mol Med. 15 (11):2478-85.
[16] Rosencrans WM, Rajendran M, Bezrukov SM, et al. (2021) VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium. 94:102356. 
[17] Man-Li Z, Yu F, Shu-le Q, et al. (2020) Research progress on potential targets-mitochondrial dynamics-related proteins in treatment of myocardial ischemia-reperfusion injury]. Zhongguo Zhong Yao Za Zhi. 45 (17):4183-4195. 
[18] Huang Yan-Ping, Yang Tian-Hua, Jin Zhi-Yan, Wang Ya, Ye Hong-Wei, Gao Qin, Li Zheng-Hong. (2018) Role of mitochondrial permeability transition pore in attenuating myocardial ischemia-reperfusion injury in rats after endomorphin-1 post-treatment. Journal of Southern Medical University, 38(05):547-553.
[19] Tu RH, Wang DX, Zhong GQ, et al. (2021) New targets of morphine postconditioning protection of the myocardium in ischemia/reperfusion injury: Involvement of HSP90/Akt and C5a/NF-κB. Open Med (Wars). 16 (1):1552-1563. 
[20] Shi E, Jiang X, Bai H, et al. (2003) Cardioprotective effects of morphine on rat heart suffering from ischemia and reperfusion. Chin Med (Engl). 116 (7):1059-62. 
[21] Maslov LN, Mukhomedzyanov AV, Tsibulnikov SY, et al. (2021) Activation of peripheral δ 2 -opioid receptor prevents reperfusion heart injury. Pharmacol. 907:174302. 
[22] Popov SV, Mukhomedzyanov AV, Tsibulnikov SY, et al. (2021) Activation of Peripheral Opioid Kappa1 Receptor Prevents Cardiac Reperfusion Injury. Physiol Res. 70 (4):523-531. 
[23] Wu LN, Hu R, Yu JM. (2021) Morphine and myocardial ischaemia-reperfusion. Pharmacol. 891:173683. 
[24] Mei B, Wang T, Wang Y, et al. (2013) High dose remifentanil increases myocardial oxidative stress and compromises remifentanil infarct-sparing effects in rats. Pharmacol. 718 (1-3):484-92. 
[25] Kunecki M, Płazak W, Roleder T, et al. (2017) 'Opioidergic postconditioning' of heart muscle during ischemia/reperfusion injury. Cardiol. 24 (4):419-426. 
[26] Lei Y, Li XX, Guo Z. (2022) Impact of timing of morphine treatment on infarct size in experimental animal model of acute myocardial ischemia and reperfusion. Pharmacol. 928:175094. 
[27] Wang Eddie, Zhang Zongze, Zhang Jingjing, Wu Yun, Wang Yanlin. (2021) Hydromorphone post-treatment attenuates apoptosis via PI3K/Akt pathway in rat myocardial ischemia-reperfusion cells. Chinese Journal of Emergency Medicine, 30(11):1329-1333.
[28] Gong HJ, Lin JJ, Li H, et al. (2020) A study on protective effect of Morphine against myocardial ischemia-reperfusion injury in rats via CAMP/PKA signaling pathway. Biol Regul Homeost Agents. 34 (5):1669-1677. 
[29] Liu C, Yang JIN C, Pan YL, et al. (2018) Effect of morphine pretreatment-induced serum exosomes on hypoxia/reoxygenation injury in H9c2 cardiomyocytes in rats. Chinese Journal of Pharmacology, 34(11):1600-1605.
[30] Song S, Tan J, Miao Y, et al. (2018) Intermittent-Hypoxia-Induced Autophagy Activation Through the ER-Stress-Related PERK/eIF2α/ATF4 Pathway is a Protective Response to Pancreatic β-Cell Apoptosis. Cell Physiol Biochem. 51 (6):2955-2971. 
[31] Zhao Miao, Han Yaru, He Yifei et al. (2020) Role of PERK pathway in the protection of myocardial H9c2 cells by morphine. Chinese Journal of Pathophysiology, 36(1):9-16
[32] Chen Z, Spahn DR, Zhang X, et al. Morphine Postconditioning Protects Against Reperfusion Injury: the Role of Protein Kinase C-Epsilon, Extracellular Signal-Regulated Kinase 1/2 and Mitochondrial Permeability Transition Pores. Cell Physiol Biochem. 2016; 39 (5):1930-1940. 
[33] Prasad AS. (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 4 (2):176-90.
[34] Begum F, Me HM, Christov M. (2022) The Role of Zinc in Cardiovascular Disease. Cardiol Rev. 30 (2):100-108. 
[35] Xu Z, Zhou J. (2013) Zinc and myocardial ischemia/reperfusion injury. Biometals. 26 (6):863-78. 
[36] Yamasaki S, Hasegawa A, Hojyo S, et al. (2012) A novel role of the L-type calcium channel α1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLoS One. 7 (6):e39654. 
[37] Chanoit G, Lee S, Xi J, et al. (2008) Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta. Physiol Heart Circ Physiol. 295(3):H1227-H1233. 
[38] Wang Guochen. (2016) The protective effect of morphine on myocardial ischemia/reperfusion injury in rats and its mechanism. Hebei Medical University.
[39] Zhou Z, Ma S, Liu J, et al. (2018) Protective effects of endogenous carbon monoxide against myocardial ischemia-reperfusion injury in rats]. Sheng Li Xue Bao. 70 (2):115-122. 
[40] Toda N, Kishioka S, Hatano Y, et al. (2009) Modulation of opioid actions by nitric oxide signaling. Anesthesiology. 110 (1):166-81. 
[41] Awano T, Zoga V, Kimura M, et al. (2009) Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation. Mol Pain. 5:12. 
[42] Iguchi K, Saotome M, Yamashita K, et al. (2019) Pinacidil, a KATP channel opener, stimulates cardiac Na + /Ca 2+ exchanger function through the NO/cGMP/PKG signaling pathway in guinea pig cardiac ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol. 392 (8):949-959. 
[43] Stefano GB, Mantione KJ, Capellan L, et al. (2015) Morphine stimulates nitric oxide release in human mitochondria. Bioenerg Biomembr. 47 (5):409-17. 
[44] Brock SC, Tonussi CR. (2008) Intrathecally injected morphine inhibits inflammatory paw edema: the involvement of nitric oxide and cyclic-guanosine monophosphate. Anesth Analg. 106 (3):965-71, table of contents.
[45] Shi Enyi, Jiang Xiaojing, Bai Han, Nakajima Yoshiki. (2004) Late myocardial protective effect of morphine pretreatment and its relationship with inducible nitric oxide synthase. Chinese Medical Journal, (11):12-16.
[46] Alves DP, Soares AC, Francischi JN, et al. (2004) Additive antinociceptive effect of the combination of diazoxide, an activator of ATP-sensitive K+ channels, and sodium nitroprusside and dibutyryl-cGMP. Pharmacol. 489 (1-2):59-65. 
[47] Aggarwal S, Virdi JK, Singh N, et al. (2019) Exploring the role and inter-relationship among nitric oxide, opioids, and K ATP channels in the signaling pathway underlying remote ischemic preconditioning induced cardioprotection in rats. Basic Med Sci. 22 (7):820-826. 
[48] Li J, Hu HP, Li Y, et al. (2018) Influences of remifentanil on myocardial ischemia-reperfusion injury and the expressions of Bax and Bcl-2 in rats. Rev Med Pharmacol Sci. 22 (24):8951-8960. 
[49] Chen CR, Bi HL, Li X, et al. (2020) Remifentanil protects neurological function of rats with cerebral ischemia-reperfusion injury via NR2B/CaMKIIα signaling pathway. Biol Regul Homeost Agents. 34 (5):1647-1656. 
[50] Cui C, Yu F, Yin S, et al. (2018) Remifentanil Preconditioning Attenuates Hepatic Ischemia-Reperfusion Injury in Rats via Neuronal Activation in Dorsal Vagal Complex. Mediators Inflamm. 2018:3260256. 
[51] Ni XQ, Hu ZY. (2020) Remifentanil improves myocardial ischemia-reperfusion injury in rats through inhibiting IL-18 signaling pathway. Rev Med Pharmacol Sci. 24 (7):3915-3922. 
[52] Seki S, Taniguchi M, Takeda H, et al. (2002) Inhibition by KB-r7943 of the reverse mode of the Na+/Ca2+ exchanger reduces Ca2+ overload in ischemic-reperfused rat hearts. Circ J. 66 (4):390-6. 
[53] Miura T, Kawamura S, Tatsuno H, et al. ( 2001) Ischemic preconditioning attenuates cardiac sympathetic nerve injury via ATP-sensitive potassium channels during myocardial ischemia. Circulation. 104 (9):1053-8. 
[54] Javadov S, Karmazyn M. (2007) Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem. 20 (1-4):1-22. 
[55] Katare RG, Ando M, Kakinuma Y, et al. (2009) Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. Thorac Cardiovasc Surg. 137 (1):223-31.
[56] Zhang Y, Zhao QH, Gu ERW, et al. (2012) Effect of remifentanil post-treatment on myocardial ischemia-reperfusion injury after cardiopulmonary diversion in dogs. Journal of Clinical Anesthesiology, 28 (6):596-598.
[57] Lucchinetti E, Lou PH, Gandhi M, et al. (2018) Differential Effects of Anesthetics and Opioid Receptor Activation on Cardioprotection Elicited by Reactive Oxygen Species-Mediated Postconditioning in Sprague-Dawley Rat Hearts. Anesth Analg. 126 (5):1739-1746. 
[58] WANG Liping, JI Zhonghua, REN Li, WANG Hui, RUI Haitao, ZENG Lulu. (2020) Protective effects of fentanyl on type 2 diabetic rat heart and modulation of protein kinase D and endoplasmic reticulum stress activation. Chinese Journal of Immunology, 36(17):2058-2063.
[59] Xu Q, Li QG, Fan GR, et al. (2017) Protective effects of fentanyl preconditioning on cardiomyocyte apoptosis induced by ischemia-reperfusion in rats. Braz J Med Biol Res. 50 (2): e5286. 
[60] Xu YC, Li RP, Xue FS, et al. (2015) κ-Opioid receptors are involved in enhanced cardioprotection by combined fentanyl and limb remote ischemic postconditioning. Anesth. 29 (4):535-43. 
[61] Xia Y, He F, Moukeila Yacouba MB, et al. (2022) Adenosine A2a Receptor Regulates Autophagy Flux and Apoptosis to Alleviate Ischemia-Reperfusion Injury via the cAMP/PKA Signaling Pathway. Front Cardiovasc Med. 9:755619.
[62] Paez DT, Garces M, Calabró V, et al. (2019) Adenosine A 1 receptors and mitochondria: targets of remote ischemic preconditioning. Physiol Heart Circ Physiol. 316 (3):H743-H750. 
[63] Kato R, Ross S, Foëx P. (2000) Fentanyl protects the heart against ischaemic injury via opioid receptors, adenosine A1 receptors and KATP channel linked mechanisms in rats. Anaesth. 84 (2):204-14. 
[64] Hynynen M, Tikkanen I, Salmenperä M, et al. (1987) Plasma atrial natriuretic peptide concentrations during induction of anesthesia and acute volume loading in patients undergoing cardiac surgery. Cardiothorac Anesth. 1 (5):401-7. 
[65] Pesonen A, Leppäluoto J, Ruskoaho H. Mechanism of opioid-induced atrial natriuretic peptide release in conscious rats. Pharmacol Exp Ther. 1990 undefined; 254(2):690-5. 
[66] Celik S, Sadegh MK, Morley M, et al. (2019) Antisense regulation of atrial natriuretic peptide expression. JCI Insight. 4 (19): null. 
[67] Preedy MEJ, Baliga RS, Hobbs AJ. (2020) Multiplicity of Nitric Oxide and Natriuretic Peptide Signaling in Heart Failure. Cardiovasc Pharmacol. 75 (5):370-384. 
[68] Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, et al. (2021) The Role of Natriuretic Peptides in the Regulation of Cardiac Tolerance to Ischemia/Reperfusion and Postinfarction Heart Remodeling. Cardiovasc Pharmacol Ther.; 26 (2):131-148. 

Downloads: 4392
Visits: 193178

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.