Image Segmentation Method for Rail Track Obstacle Based on Improved Fast Binarization
DOI: 10.23977/jipta.2016.11005 | Downloads: 75 | Views: 6607
Author(s)
Xu Tiantian 1, Li Jiying 1
Affiliation(s)
1 School of Electronic & Information Engineering, Lanzhou Jiao tong University, Lanzhou, 730070, China
Corresponding Author
Xu TiantianABSTRACT
The idea of recursion and limited range is introduced in the traditional fast binarization algorithm. Firstly, according to the characteristics of the fast binarization algorithm, the recursion formulas of four parameters are deduced, and the complexity of the image is calculated . Then fast threshold segmentation of image is finished within the reduced gray level range. Because of considering the four parameters formula of recursive and fully aware of the images complexity, the gray value of the image to be traversed is greatly reduced, and the redundancy of the algorithm is reduced. Finally, the improved algorithm is applied to extraction of railway track obstacle. The experimental results show that this algorithm complexity is lower than traditional algorithm and Otsu, and the computation speed can be improved by about 60%. It can meet the real-time requirement for railway track obstacle image segmentation, and the segmentation effect is almost the same as the traditional one.
KEYWORDS
Image segmentation; Fast binarization algorithm; Image complexity; Railway track obstacleCITE THIS PAPER
Jiying, L. and Tiantian X. (2016) Image Segmentation Method for Rail Track Obstacle Based on Improved Fast Binarization. Journal of Image Processing Theory and Applications (2016) 1: 21-26.
REFERENCES
[1] WU Xu,HU Si-ji,CUI Yan-ping et.Study on Information Safeguard System of High-speed Railway[J].China Safety Science Journal,2005, 15(4):80-83.
[2] Song Juan. Research on Obstacle Detection for Railway Auto-detection System[D].thesis. Hangzhou: Zhejiang University,2008.
[3] Li Shengjin. Design and implementation of a video-based Railway level crossing obstacle detection algorithm [D]. Thesis. Shenyang: Shenyang Institute of Computing Technology, Chinese Academy of Sciences, 2012.
[4] LijuDong,Ge Yu. An optimization-based approach to image binarization [J]. SMC, 2004(4):3057-3062.
[5] Mehmet Sezgin,Bulent Sankur,Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging.2004.13(1):146-165.
[6] Wu Yiquan,Meng Tianliang,Wu Shihua.Research Progress of Image Thresholding Methods in Recent 20 Years (1994-2014)[J]Journal Data Acquisition and Processing,2015.30(1):1-23.
[7] CHEN Zheng,SHI Yong-peng,JI Shupeng. Improved image threshold segmentation algorithm based on Otsu method [J].LASER & INFRARED,2012.42(5):584-588.
[8] DONG Zhong-yan,JIANG Li-xing,WANG Jun-ya et.Modified One-dimensional Otsu Algorithm Based on Image Complexity[J].Computer Science, 2015.42(6A):(171-174).
[9] GAO Zhen-yu,YANG Xiao-mei,GONG Jian-ming,JIN Hai.Research on Image Complexity Description Methods[J].Journal of Image and Graphics, 2010.15(1):129-135.
Downloads: | 1625 |
---|---|
Visits: | 117017 |
Sponsors, Associates, and Links
-
Power Systems Computation
-
Internet of Things (IoT) and Engineering Applications
-
Computing, Performance and Communication Systems
-
Journal of Artificial Intelligence Practice
-
Advances in Computer, Signals and Systems
-
Journal of Network Computing and Applications
-
Journal of Web Systems and Applications
-
Journal of Electrotechnology, Electrical Engineering and Management
-
Journal of Wireless Sensors and Sensor Networks
-
Mobile Computing and Networking
-
Vehicle Power and Propulsion
-
Frontiers in Computer Vision and Pattern Recognition
-
Knowledge Discovery and Data Mining Letters
-
Big Data Analysis and Cloud Computing
-
Electrical Insulation and Dielectrics
-
Crypto and Information Security
-
Journal of Neural Information Processing
-
Collaborative and Social Computing
-
International Journal of Network and Communication Technology
-
File and Storage Technologies
-
Frontiers in Genetic and Evolutionary Computation
-
Optical Network Design and Modeling
-
Journal of Virtual Reality and Artificial Intelligence
-
Natural Language Processing and Speech Recognition
-
Journal of High-Voltage
-
Programming Languages and Operating Systems
-
Visual Communications and Image Processing
-
Journal of Systems Analysis and Integration
-
Knowledge Representation and Automated Reasoning
-
Review of Information Display Techniques
-
Data and Knowledge Engineering
-
Journal of Database Systems
-
Journal of Cluster and Grid Computing
-
Cloud and Service-Oriented Computing
-
Journal of Networking, Architecture and Storage
-
Journal of Software Engineering and Metrics
-
Visualization Techniques
-
Journal of Parallel and Distributed Processing
-
Journal of Modeling, Analysis and Simulation
-
Journal of Privacy, Trust and Security
-
Journal of Cognitive Informatics and Cognitive Computing
-
Lecture Notes on Wireless Networks and Communications
-
International Journal of Computer and Communications Security
-
Journal of Multimedia Techniques
-
Automation and Machine Learning
-
Computational Linguistics Letters
-
Journal of Computer Architecture and Design
-
Journal of Ubiquitous and Future Networks