Education, Science, Technology, Innovation and Life
Open Access
Sign In

Molecular Regulation Mechanisms of Ferroptosis and Its Progress in AML Treatment

Download as PDF

DOI: 10.23977/tranc.2023.040109 | Downloads: 12 | Views: 387

Author(s)

Rong Wang 1, Zhihui Zhou 2, Naichuan Chen 1, Zihui Li 1, Hong Li 1,3

Affiliation(s)

1 Shaanxi University of Chinese Medicine, Xianyang, 712046, China
2 The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China
3 Pharmaceutical Factory, Shaanxi University of Chinese Medicine, Xianyang, 712083, China

Corresponding Author

Hong Li

ABSTRACT

This review focuses on the intricate molecular mechanisms and advancements of ferroptosis in Acute Myeloid Leukemia (AML) treatment. AML, an uncontrolled proliferation of undifferentiated myeloid precursor cells, demonstrates a high degree of chemotherapy resistance, resulting in poor prognosis. Ferroptosis, a distinct form of cell death involving iron accumulation and lipid peroxidation, has emerged as a promising therapeutic strategy. Herein, we dissect the oxidative-antioxidative mechanisms and iron death, highlighting the roles of the glutathione system and Fenton reaction. Furthermore, the association of lipid peroxidation with ferroptosis, as well as the advancements in AML research focusing on the XCT-GSH-GPX4 pathway and the interplay of autophagy and ferroptosis, are detailed. This comprehensive analysis underscores the potential of ferroptosis as a targeted therapeutic approach for AML.

KEYWORDS

Ferroptosis, Acute Myeloid Leukemia, Oxidative-Antioxidative Mechanisms, XCT-GSH-GPX4 Pathway, Autophagy

CITE THIS PAPER

Rong Wang, Zhihui Zhou, Naichuan Chen, Zihui Li, Hong Li, Molecular Regulation Mechanisms of Ferroptosis and Its Progress in AML Treatment. Transactions on Cancer (2023) Vol. 4: 60-64. DOI: http://dx.doi.org/10.23977/tranc.2023.040109.

REFERENCES

[1] Desch J K, Smoller B R. The spectrum of cutaneous disease in leukemias. [J]. Journal of cutaneous pathology, 1993, 20(5). 
[2] Callens Celine, Coulon Séverine, Naudin Jerome, Radford-Weiss Isabelle, Boissel Nicolas, Raffoux Emmanuel, Wang Pamella Huey Mei, Agarwal Saurabh, Tamouza Houda, Paubelle Etienne, Asnafi Vahid, Ribeil Jean-Antoine, Dessen Philippe, Canioni Danielle, Chandesris Olivia, Rubio Marie Therese, Beaumont Carole, Benhamou Marc, Dombret Hervé, Macintyre Elizabeth, Monteiro Renato C, Moura Ivan C, Hermine Olivier. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia. [J]. The Journal of experimental medicine, 2010, 207(4). 
[3] Barrington-Trimis Jessica L, Cockburn Myles, Metayer Catherine, Gauderman W James, Wiemels Joseph, McKean-Cowdin Roberta. Trends in childhood leukemia incidence over two decades from 1992 to 2013. [J]. International journal of cancer, 2017, 140(5). 
[4] Siegel Rebecca L., Miller Kimberly D., Fuchs Hannah E., Jemal Ahmedin. Cancer Statistics, 2021[J]. CA: A Cancer Journal for Clinicians, 2021, 71(1). 
[5] Scott J. Dixon, Kathryn M. Lemberg, Michael R. Lamprecht, Rachid Skouta, Eleina M. Zaitsev, Caroline E. Gleason, Darpan N. Patel, Andras J. Bauer, Alexandra M. Cantley, Wan Seok Yang, Barclay Morrison, Brent R. Stockwell. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death[J]. Cell, 2012, 149(5). 
[6] Kuang Feimei, Liu Jiao, Tang Daolin, Kang Rui. Oxidative Damage and Antioxidant Defense in Ferroptosis. [J]. Frontiers in cell and developmental biology, 2020, 8. 
[7] Jiang Li, Wang Jiaming, Wang Kai, Wang Hao, Wu Qian, Yang Cong, Yu Yingying, Ni Pu, Zhong Yueyang, Song Zijun, Xie Enjun, Hu Ronggui, Min Junxia, Wang Fudi. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. [J]. Blood, 2021, 138(8). 
[8] Zheng Jiashuo, Conrad Marcus. The Metabolic Underpinnings of Ferroptosis. [J]. Cell metabolism, 2020, 32(6). 
[9] Manz David H, Blanchette Nicole L, Paul Bibbin T, Torti Frank M, Torti Suzy V. Iron and cancer: recent insights. [J]. Annals of the New York Academy of Sciences, 2016, 1368(1). 
[10] Raggi Chiara, Gammella Elena, Correnti Margherita, Buratti Paolo, Forti Elisa, Andersen Jesper B, Alpini Gianfranco, Glaser Shannon, Alvaro Domenico, Invernizzi Pietro, Cairo Gaetano, Recalcati Stefania. Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells. [J]. Scientific reports, 2017, 7(1). 
[11] Chaodeng He, Tiantian Shen. Molecular mechanisms of ferroptosis and its role in cancer therapy[J]. Journal of Cellular and Molecular Medicine, 2019, 23(8).DOI:10.1111/jcmm.14511.
[12] Caitlin W. Brown, John J. Amante, Peter Chhoy, Ameer L. Elaimy, Haibo Liu, Lihua Julie Zhu, Christina E. Baer, Scott J. Dixon, Arthur M. Mercurio. Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export[J]. Developmental Cell, 2019, 51(5). 
[13] Yang Wan Seok, Kim Katherine J, Gaschler Michael M, Patel Milesh, Shchepinov Mikhail S, Stockwell Brent R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34). 
[14] Doll Sebastian, Proneth Bettina, Tyurina Yulia Y, Panzilius Elena, Kobayashi Sho, Ingold Irina, Irmler Martin, Beckers Johannes, Aichler Michaela, Walch Axel, Prokisch Holger, Trümbach Dietrich, Mao Gaowei, Qu Feng, Bayir Hulya, Füllekrug Joachim, Scheel Christina H, Wurst Wolfgang, Schick Joel A, Kagan Valerian E, Angeli José Pedro Friedmann, Conrad Marcus. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. [J]. Nature chemical biology, 2017, 13(1). 
[15] Lei Guang, Zhuang Li, Gan Boyi. Targeting ferroptosis as a vulnerability in cancer. [J]. Nature reviews. Cancer, 2022, 22(7). 
[16] Birsen Rudy, Larrue Clement, Decroocq Justine, Johnson Natacha, Guiraud Nathan, Gotanegre Mathilde, CanteroAguilar Lilia, Grignano Eric, Huynh Tony, Fontenay Michaela, Kosmider Olivier , Mayeux Patrick, Chapuis Nicolas, Sarry Jean Emmanuel, Tamburini Jerome, Bouscary Didier. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. [J]. Haematologica, 2022, 107(2). 
[17] Chul Won Yun, Sang Hun Lee. The Roles of Autophagy in Cancer[J]. International Journal of Molecular Sciences, 2018, 19(11). 
[18] Gu Xiaohong, Li Yuechun, Chen Kaixin, Wang Xingang, Wang Zhongyu, Lian Hao, Lin Yuanzheng, Rong Xing, Chu Maoping, Lin Jiafeng, Guo Xiaoling. Exosomes derived from umbilical cord mesenchymal stem cells alleviate viral myocarditis through activating AMPK/mTOR-mediated autophagy flux pathway. [J]. Journal of cellular and molecular medicine, 2020, 24(13). 
[19] Jing Du, Tongtong Wang, Yanchun Li, Yi Zhou, Xin Wang, Xingxing Yu, Xueying Ren, Yihan An, Yi Wu, Weidong Sun, Weimin Fan, Qiaojuan Zhu, Ying Wang, Xiangmin Tong. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin[J]. Free Radical Biology and Medicine, 2018, 131. 
[20] Zhu HaiYan, Huang ZongXuan, Chen GuoQi, Sheng Fen, Zheng YinSuo. Typhaneoside prevents acute myeloid leukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy[J]. Biochemical and biophysical research communications, 2019, 516(4).

Downloads: 428
Visits: 28589

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.