Education, Science, Technology, Innovation and Life
Open Access
Sign In

Alumina-based crucibles with enhanced thermal shock resistance via reinforcement of mullite fibers

Download as PDF

DOI: 10.23977/jmpd.2023.070303 | Downloads: 15 | Views: 368

Author(s)

Hongna Fan 1, Jiaxian Fan 2, Xin Li 1, Changjian Qi 1, Weiwei Han 1, Xiqing Xu 2

Affiliation(s)

1 AECC Aegis Advanced Protective Technology Co., Ltd, Tianjin, 300399, China
2 School of Materials Science & Engineering, Chang'an University, Xi'an, 710061, China

Corresponding Author

Hongna Fan

ABSTRACT

Crucible is the indispensable vessel in smelting of superalloy, and the service life of crucibles is quite important to the development of superalloy. In order to extend the service life of crucible for superalloy smelting, alumina-based crucibles are prepared by slip casting, and mullite fibers are used as reinforcement phase. The effect of mullite fibers on the microstructure and property of the crucibles was studied. The appropriate content of mullite fibers are beneficial to the comprehensive performance of the crucibles. The reinforcement mechanism of mullite fibers includes crack deflection, fiber extraction, and fiber bridging, through which fibers hinder the initiation and propagation of cracks in ceramics. For the crucible samples with 3 wt% of mullite fibers, the values of flexure strength are 22.47 MPa and 19.14 MPa at room temperature and high-temperature, respectively. After thermal shock for 5 times, the residual room-temperature flexural strength is 16.65 MPa and the strength retention rate is 74.1%. It is confirmed that, the 3 wt% of mullite fibers improves the thermal shock resistance of the crucible, which is beneficial for extending the service life of the crucible for superalloy melting.

KEYWORDS

Alumina-based crucible, superalloy smelting, thermal shock resistance, mullite fiber, mechanical property

CITE THIS PAPER

Hongna Fan, Jiaxian Fan, Xin Li, Changjian Qi, Weiwei Han, Xiqing Xu, Alumina-based crucibles with enhanced thermal shock resistance via reinforcement of mullite fibers. Journal of Materials, Processing and Design (2023) Vol. 7: 10-18. DOI: http://dx.doi.org/10.23977/jmpd.2023.070303.

REFERENCES

[1] Kollova, A., Pauerova, K. Superalloys - characterization, usage and recycling, Manufacturing Technology, (2022) 22, 550-557. 
[2] Lin, Y. C., Wu, X. Y., Chen, X. M., Chen, J., Wen, D. X., Zhang, J. L., Li, L. T. EBSD study of a hot deformed nickel-based superalloy, Journal of Alloys and Compounds, (2015) 640, 101-113. 
[3] Bauer, A., Neumeier, S., Pyczak, F., Goken, M. Microstructure and creep strength of different gamma/gamma '-strengthened Co-base superalloy variants, Scripta Materialia, (2010) 63, 1197-1200. 
[4] Henderson, M. B., Arrell, D., Larsson, R., Heobel, M., Marchant, G. Nickel based superalloy welding practices for industrial gas turbine applications, Science and Technology of Welding and Joining, (2004) 9, 13-21
[5] Zhang, C., Yang, B., Wang, Y., Tu, G. X. Preliminary research on a high thrust-to-weight ratio of double-sided composite impeller microturbine engine, International Journal of Aerospace Engineering, (2021) 9931701. 
[6] Frenzel, J., Zhang, Z., Neuking, K., Eggeler, G. High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles, Journal of Alloys and Compounds, (2004) 385, 214-223. 
[7] Zhang, C., Wang, J., Zhang, H., Ding, B. Effects of Ni and Co on microstructure and characteristics of CuCr25 prepared by vacuum induction melting, Rare Metal Materials and Engineering, (2001) 30, 286-289. 
[8] Sornlar, W., Choeycharoen, P., Wannagon, A. Characterization of alumina crucible made from aluminum industrial waste, Journal of the Australian Ceramic Society, (2019) 56(2), 1-9. 
[9] Sembiringa, S., Simanjuntak, W., Situmeang, R., et al. Effect of alumina addition on the phase transformation and crystallisation properties of refractory cordierite prepared from amorphous rice husk silica, Journal of Asian Ceramic Societies, (2017) 5, 186-192. 
[10] Fan, J. X., Fan, H. N., Song, Z., Guo, Y. J., Li, M. M., Li X., Qi, C. J., Xu, X. Q. Thermal-shock stable Al2O3 crucible for superalloy smelting through slip casting with particle gradation, Ceramics International, (2023) 49, 8762–8771. 
[11] Li, Q. L., Zhang, H. R., Cui, Y. S., Yang, C. L., Gao, M., Li, J. P; Zhang, H. Behavior and Mechanism of High-Temperature Stability between Tial-Based Alloy and Y2O3-Al2O3 Composite Crucibles, Materials, (2018) 11, 1107. 
[12] Jang, J., Lee, H. S., Lee, S. Stability of plasma-sprayed TiN and ZrN coatings on graphite for application to uranium-melting crucibles for pyroprocessing, Journal of Radioanalytical and Nuclear Chemistry, (2016) 310, 1173-1180. 
[13] Fashu, S., Lototskyy, M., Davids, M. W., Pickering, L., Linkov, V., Tai, S., Renheng, T ., Xiao, F. M., Fursikov, P. V., Tarasov, B. P. A review on crucibles for induction melting of titanium alloys, Materials & Design, (2020) 186, 108295. 
[14] Ma, L. M., Zhang, J. Z., Yue, GQ., Zhang, HR., Zhou, L., Zhang, H. Improvement and application of Y2O3 directional solidification crucible, Chinese Journal of Aeronautics, (2016) 29, 554-559. 
[15] Tetsui, T., Kobayashi, T., Mori, T., Kishimoto, T. Harada, H., Evaluation of Yttria Applicability as a Crucible for Induction Melting of TiAl Alloy, Materials Transactions, (2010) 9, 1656-1662. 
[16] Yuan, J. Service Effect of Quartz Crucible for Platinum Jewelry Casting, Special Casting & Nonferrous Alloys, (2018) 38, 25-28. 
[17] Yu, J. K., Cui, C. W., Tian, X. Z., Wang, C., Wang, X. L., Dai, W. B. Fabrication of coarse grain yttria composite and its corrosion resistance to molten titanium, Journal of Ceramic Processing Research, (2017) 17, 1042-1045
[18] Alrobei, H., Hafiz, A., Malik, R. A. Design and manufacturing of lanthanum phosphate (LaPO4)-based crucible for high temperature applications, Journal of Ceramic Processing Research, (2021) 22, 499-503. 
[19] Sembiring, S., Simanjuntak, W., Situmeang, R., Riyanto, A., Karo-Karo, P., Asian Ceram, J. Effect of alumina addition on the phase transformation and crystallisation properties of refractory cordierite prepared from amorphous rice husk silica, Journal of Asian Ceramic Societies, (2017) 5, 186-192. 
[20] Lv, L., Lu, Y. J., Zhang, X. Y., Chen, Y. G., Huo, W. L., Liu, W., Yang, J. L. Preparation of low-shrinkage and high-performance alumina ceramics via incorporation of pre-sintered alumina powder based on Isobam gelcasting, Ceramics International, (2019) 45, 11654-11659. 
[21] Golestani-fard, F., Mazaheri, M., Aminzare, M., Ebadzadeh, T. Microstructural evolution of a commercial ultrafine alumina powder densified by different methods, Journal of the European Ceramic Society, (2011) 31, 2593-2599. 
[22] Wang, L. Y., An, L., Zhao, J., Shimai, S., Mao, X. J., Zhang, J., Liu, J., Wang, S. W. High-strength porous alumina ceramics prepared from stable wet foams, Journal of Advanced Ceramics, (2021) 10, 852-859. 
[23] Zhang, P., Zhou, F. S., Zhang, C., Yan, Z. M., Li, J. Y., Jin, H. Y., Zhang, H., Lu, J. Y. Charge trapping characteristics of alumina based ceramics, Ceramics International, (2018) 44, 12112-12117. 
[24] Obikawa, T., Matsumura, T., Shirakashi, T., Usui, E. Wear characteristic of alumina coated and alumina ceramic tools, Journal of Materials Processing Technology, (1997) 63, 211-216. 
[25] Liang, Y. Y., Chen, D. M., Tong, J. F. Compression Dynamic Performance of Bulletproof Alumina Ceramic, Rare Metal Materials and Engineering, (2013) 42, 956-959. 
[26] Yang, R., Qi, Z., Gao, Y., Yang, J. H., Zhou, Y. R., Liu, H., Peng, L. M., Jiao, J. Effects of alumina sols on the sintering of alpha-alumina ceramics, Ceramics International, (2020) 43, 20865-20870. 
[27] Lang, Y., Wang, C. A. Al2O3-fiber-reinforced porous YSZ ceramics with high mechanical strength, Ceramics International, (2014) 40, 10329-10335. 
[28] Naslain, R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview, Composites science and Technology, (2004) 64, 155-170. 
[29] Wang, M., Liu, J., Du, H., et al. A SiC whisker reinforced high-temperature resistant phosphate adhesive for bonding carbon/carbon composites, Journal of Alloys and Compounds, (2015) 633, 145-152. 
[30] Li, L. Damage development in fiber-reinforced ceramic-matrix composites under cyclic fatigue loading using hysteresis loops at room and elevated temperatures, International Journal of Fracture, (2016) 199, 39-58. 
[31] Reinders, L., Pfeifer, S., Kroener, S., Stolpmann, H., Renfftlen, A., Greiler, L. C., Clauss, B., Buchmeiser, M. R. Development of mullite fibers and novel zirconia-toughened mullite fibers for high temperature applications, Journal of the European Ceramic Society, (2021) 41, 3570-3580. 
[32] Dong, X., Liu, J. Q., Li, X. T., Zhang, X. J., Xue, Y. J., Liu, J. C., Guo, A. R., Electrospun mullite nanofibers derived from diphasic mullite sol, Journal of the American Ceramic Society, (2017)100, 3425-3433. 
[33] Niu, S., Xu, X., Li, X., et al. Microstructure evolution and properties of silica-based ceramic cores reinforced by mullite fibers, Journal of Alloys and Compounds, (2020) 829, 154494. 
[34] Liu, C., Cai, C., Xie, J., et al. Effect of surface brittle-to-ductile transition on high-temperature thermal shock resistance of Al2O3 ceramics, Ceramics International, (2022) 48(14), 20627-20638. 
[35] Zhang, L., Olhero, S., Ferreira, J. M. F. Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics, Ceramics International, (2016) 42(15), 16897-16905. 
[36] Ma, J., Zhao, H., Yu, J., et al. The critical role of aggregate microstructure in thermal shock resistance and slag resistance of Al2O3-SiC-C castable, Ceramics International, (2022) 48(8), 11644-11653.

Downloads: 1786
Visits: 102665

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.