Education, Science, Technology, Innovation and Life
Open Access
Sign In

Ferroptosis: Emerging mechanisms, biology and hallmarks

Download as PDF

DOI: 10.23977/medsc.2023.040608 | Downloads: 10 | Views: 265

Author(s)

Zixun Wang 1, Daowei Li 1

Affiliation(s)

1 Jilin Provincial Key Laboratory of Oral Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China

Corresponding Author

Daowei Li

ABSTRACT

Ferroptosis is a new type of cell death which is iron-dependent and caused by lipid peroxidation, distinguished from apoptosis, necrosis, pyroptosis, and autophagy. The occurrence of ferroptosis is determined by the balance between the ferroptosis execution systems and the ferroptosis defense systems. The ferroptosis execution system includes iron metabolism, lipid metabolism, mitochondrial metabolism, etc., which induces ferroptosis by promoting the production of ROS. The ferroptosis resistance system is mainly comprised of antioxidants such as GPX4 and coenzyme Q (CoQ), which eleminate ROS and suppress ferroptosis. After cells undergo ferroptosis, morphological, biochemical, genetic, immune, and other changes occur. This review focuses on the molecular mechanism and characteristics of ferroptosis, and analyzes the potential problems as well as directions of its future research.

KEYWORDS

Ferroptosis, cell death, lipid peroxidation, iron metabolism

CITE THIS PAPER

Zixun Wang, Daowei Li, Ferroptosis: Emerging mechanisms, biology and hallmarks. MEDS Clinical Medicine (2023) Vol. 4: 51-60. DOI: http://dx.doi.org/10.23977/medsc.2023.040608.

REFERENCES

[1] Hu Z W, Chen L, Ma R Q, et al. Comprehensive analysis of ferritin subunits expression and positive correlations with tumor-associated macrophages and T regulatory cells infiltration in most solid tumors[J]. Aging (Albany NY), 2021, 13(8): 11491-11506.
[2] Doll S, Conrad M. Iron and ferroptosis: A still ill-defined liaison[J]. IUBMB Life, 2017, 69(6): 423-434.
[3] Ma S, Henson E S, Chen Y, et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016, 7(7): e2307.
[4] Quiles Del Rey M, Mancias J D. NCOA4-Mediated Ferritinophagy: A Potential Link to Neurodegeneration[J]. Front Neurosci, 2019, 13: 238.
[5] Yang W S, Kim K J, Gaschler M M, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016, 113(34): E4966-4975.
[6] Koppula P, Zhuang L, Gan B. Cytochrome P450 reductase (POR) as a ferroptosis fuel[J]. Protein Cell, 2021, 12(9): 675-679.
[7] Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8): 1425-1428.
[8] Mancias J D, Wang X, Gygi S P, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509(7498): 105-109.
[9] Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26(9): 1021-1032.
[10] Kremer D M, Nelson B S, Lin L, et al. GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis[J]. Nat Commun, 2021, 12(1): 4860.
[11] Kagan V E, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90.
[12] Doll S, Proneth B, Tyurina Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-98.
[13] Friedmann Angeli J P, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191.
[14] Zheng J, Conrad M. The Metabolic Underpinnings of Ferroptosis[J]. Cell Metab, 2020, 32(6): 920-937.
[15] Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis[J]. Nat Cell Biol, 2020, 22(2): 225-234.
[16] Li C, Dong X, Du W, et al. LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis[J]. Signal Transduct Target Ther, 2020, 5(1): 187.
[17] Gao M, Yi J, Zhu J, et al. Role of Mitochondria in Ferroptosis[J]. Mol Cell, 2019, 73(2): 354-363.e353.
[18] Gan B. Mitochondrial regulation of ferroptosis[J]. J Cell Biol, 2021, 220(9).
[19] Yang W S, Sriramaratnam R, Welsch M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1-2): 317-331.
[20] Brigelius-Flohé R, Maiorino M. Glutathione peroxidases[J]. Biochim Biophys Acta, 2013, 1830(5): 3289-3303.
[21] Forman H J, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis[J]. Mol Aspects Med, 2009, 30(1-2): 1-12.
[22] Maiorino M, Conrad M, Ursini F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues[J]. Antioxid Redox Signal, 2018, 29(1): 61-74.
[23] Zhu J, Berisa M, Schwörer S, et al. Transsulfuration Activity Can Support Cell Growth upon Extracellular Cysteine Limitation[J]. Cell Metab, 2019, 30(5): 865-876.e865.
[24] Chio I I C, Tuveson D A. ROS in Cancer: The Burning Question[J]. Trends Mol Med, 2017, 23(5): 411-429.
[25] Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620.
[26] Viswanathan V S, Ryan M J, Dhruv H D, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017, 547(7664): 453-457.
[27] Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions[J]. Biochem J, 2000, 347 Pt 1(Pt 1): 1-16.
[28] Soula M, Weber R A, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers[J]. Nat Chem Biol, 2020, 16(12): 1351-1360.
[29] Bersuker K, Hendricks J M, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692.
[30] Stefely J A, Pagliarini D J. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis[J]. Trends Biochem Sci, 2017, 42(10): 824-843.
[31] Crane F L. Discovery of ubiquinone (coenzyme Q) and an overview of function[J]. Mitochondrion, 2007, 7 Suppl: S2-7.
[32] Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497-503.
[33] Doll S, Freitas F P, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575(7784): 693-698.
[34] Kalén A, Norling B, Appelkvist E L, et al. Ubiquinone biosynthesis by the microsomal fraction from rat liver[J]. Biochim Biophys Acta, 1987, 926(1): 70-78.
[35] Mao C, Liu X, Zhang Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586-590.
[36] Liang H, Yoo S E, Na R, et al. Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions[J]. J Biol Chem, 2009, 284(45): 30836-30844.
[37] Dixon S J, Lemberg K M, Lamprecht M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[38] Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways[J]. Nat Rev Mol Cell Biol, 2014, 15(2): 135-147.
[39] Chen X, Yu C, Kang R, et al. Iron Metabolism in Ferroptosis[J]. Front Cell Dev Biol, 2020, 8: 590226.
[40] Yuan H, Li X, Zhang X, et al. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation[J]. Biochem Biophys Res Commun, 2016, 478(2): 838-844.
[41] Homma T, Kobayashi S, Fujii J. Cysteine preservation confers resistance to glutathione-depleted cells against ferroptosis via CDGSH iron sulphur domain-containing proteins (CISDs)[J]. Free Radic Res, 2020, 54(6): 397-407.
[42] Song X, Zhu S, Chen P, et al. AMPK-Mediated BECN1 Phosphorylation Promotes Ferroptosis by Directly Blocking System X(c)(-) Activity[J]. Curr Biol, 2018, 28(15): 2388-2399.e2385.
[43] Lu J, Xu F, Lu H. LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53[J]. Life Sci, 2020, 260: 118305.
[44] Ayala A, Muñoz M F, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal[J]. Oxid Med Cell Longev, 2014, 2014: 360438.
[45] Yang W S, Stockwell B R. Ferroptosis: Death by Lipid Peroxidation[J]. Trends Cell Biol, 2016, 26(3): 165-176.
[46] Kuang F, Liu J, Tang D, et al. Oxidative Damage and Antioxidant Defense in Ferroptosis[J]. Front Cell Dev Biol, 2020, 8: 586578.
[47] Shintoku R, Takigawa Y, Yamada K, et al. Lipoxygenase-mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3[J]. Cancer Sci, 2017, 108(11): 2187-2194.
[48] Ye L F, Chaudhary K R, Zandkarimi F, et al. Radiation-Induced Lipid Peroxidation Triggers Ferroptosis and Synergizes with Ferroptosis Inducers[J]. ACS Chem Biol, 2020, 15(2): 469-484.
[49] Nomura K, Imai H, Koumura T, et al. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis[J]. Biochem J, 2000, 351(Pt 1): 183-193.
[50] Kumar A, Tikoo S, Maity S, et al. Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione[J]. EMBO Rep, 2012, 13(12): 1095-1101.
[51] Mungrue I N, Pagnon J, Kohannim O, et al. CHAC1/MGC4504 is a novel proapoptotic component of the unfolded protein response, downstream of the ATF4-ATF3-CHOP cascade[J]. J Immunol, 2009, 182(1): 466-476.
[52] Sun X, Niu X, Chen R, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis[J]. Hepatology, 2016, 64(2): 488-500.
[53] Yang W S, Stockwell B R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15(3): 234-245.
[54] Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death[J]. Semin Cancer Biol, 2020, 66: 89-100.
[55] Li C, Zhang Y, Liu J, et al. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death[J]. Autophagy, 2021, 17(4): 948-960.
[56] Sun Y, Zheng Y, Wang C, et al. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells[J]. Cell Death Dis, 2018, 9(7): 753.
[57] Zhu S, Zhang Q, Sun X, et al. HSPA5 Regulates Ferroptotic Cell Death in Cancer Cells[J]. Cancer Res, 2017, 77(8): 2064-2077.
[58] Wu Z, Geng Y, Lu X, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis[J]. Proc Natl Acad Sci U S A, 2019, 116(8): 2996-3005.
[59] Liu Y, Wang Y, Liu J, et al. Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death[J]. Cancer Gene Ther, 2021, 28(1-2): 55-63.
[60] Yang L, Chen X, Yang Q, et al. Broad Spectrum Deubiquitinase Inhibition Induces Both Apoptosis and Ferroptosis in Cancer Cells[J]. Front Oncol, 2020, 10: 949.
[61] Yang M, Chen P, Liu J, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis[J]. Sci Adv, 2019, 5(7): eaaw2238.
[62] Matsushita M, Freigang S, Schneider C, et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection[J]. J Exp Med, 2015, 212(4): 555-568.
[63] Xu S, Min J, Wang F. Ferroptosis: an emerging player in immune cells[J]. Sci Bull (Beijing), 2021, 66(22): 2257-2260.

Downloads: 4587
Visits: 199257

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.