








 

developed by the authors. Out of these, the first is a third-order spectrally optimized scheme 
involving four cells. In Fig. 3, we show the performance of the COMPUS with α= 0:01; b0 = 1 for 
this problem at t = 40; 100. We have computed with the same CFL of 0.1. This corresponds to 
figure 10 and 11 of Bose et al. We note that the low-dissipation version of the COMPUS does much 
better compared to the 4P3Om1 scheme, and its performance is very close to that of the OUCS3, 
another optimized scheme with a larger stencil. We also notice that the 7 point optimized seventh-
order scheme is unstable and produces much higher amplitude than the initial wave packet. At t = 
40 the 4P3Om1 shows small ripples in the place of the actual wave packet. At t = 100, the waves 
are almost non-existent under this scheme. The performance of the low-dissipation COMPUS, on 
the other hand, is quite satisfactory. 

4. Conclusion 

A class of third-order compact upwind scheme has been implemented for application of unsteady 
compressible flow problem with shocks and vortices. Number of one-dimensional problems has 
been solved using this scheme. Results are matches well with the exact result. Future scope lies in 
the application of these scheme to two-dimensional compressible problem. 
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