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Abstract: This article presents an method of making out the optimized solution to the basic 
system of linear equations.In the process, it only needs to use the properties of simple 
elementary row transformation and number multiplication vector to directly obtain the 
basic solution system of the homogeneous linear equation system, and also directly obtain 
the special solution of the non-homogeneous linear equation system and the corresponding 
basic solution system of the derived system. 

1. Introduction 

For the basic solution system of a homogeneous linear equation system with infinitely many 
solutions, the textbooks [1-4] all use ( )Arn − independent vector to solve. Li Yun [5] directly 
constructed the special solution of the non-homogeneous linear equations and the basic solution 
system of the derived system. Zhao Yanhui [6] transforms A into the row minimalist 
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For non-homogeneous, this method requires two specific elementary transformations, which is 
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tedious and difficult to understand and remember. He Fangli [9] used the elementary row 
transformation to transform the coefficient matrix into a row step matrix, but it cannot directly find 
the basic solution system. It is still necessary to fill in the blanks to construct the vector in the basic 
solution system. And the process needs the solver to remember the formula.   

2. Optimal solution of basic solution system 

Consider the solution of general linear equations (1) 
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Then the matrix form of the system of equations (1) is bAx = , and the matrix form of the derived 
system of the system of equations (1) is 

                              0=Ax                           (2) 

When ( ) ( ) nrbArAr <== , , there are infinitely many solutions to equations (1) and (2). 
Applying elementary row transformation to the augmented matrix ( )bA of equations (1), it can be 
transformed into the following form: 
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That is, equations (1) and (4) have the same solution 
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Where, 1+rx , 2+rx ,  , nx are free variables.Let free variables be arbitrary 
constants ( )rnici −= 2,1 , 
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then equation(4)is equivalent to
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the matrix form of equation(5)is equivalent to: 
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or          

[ ]Trddd 00021 =η  

[ ]Trrrr kkk 0011 1 21 11  +++ −−−=ξ
[ ]Trrrr kkk 0102 2 22 12  +++ −−−=ξ  

         

[ ]Tnrnnrn kkk 100  2 1  −−−=−ξ  

then equation (6) is transformed into 
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Theorem 1: 1ξ , 2ξ , , nξ  is a maximally linear independent solution set of homogeneous linear 
equation (2). 

Demonstrate, First prove that 1ξ , 2ξ ,  , nξ  is linearly independent. With a set of 
numbers 1y , 2y , , rny −  
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The solution: 021 === −rnyyy  .So 1ξ , 2ξ , , nξ are linearly independent.From equation(7)we 
know that,any one of the solution of equation set(2)is one of the Linear combinations of 

1ξ , 2ξ , , nξ .The theorem is proved. 
The following demonstrates that any solution of the linear equations (2) can be linearly 

expressed by 1ξ , 2ξ , , nξ . 
Let 0=b , Get the derived set(2) of equations (1), then apply elementary transformation on its 

augmented matrix ( )0A ,the in(3) 021 ==== rddd  , or 0=η . Under this circumstance,(7)is 
equivalent to 
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Demonstration finished. 
Definition 1: A maximal independent set of solution set of a homogeneous linear equations is 

called a basic solution system of the equations. 
Example 1: What is the basic solution series of homogeneous linear 

equations
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Solution: The following is the corresponding coefficient matrix and transform it into the simplest 
form of rows using elementary transformation 
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That is, the original equations have the same solution with the following equations 
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From the theorem 1 and definitions 1, 1ξ , 2ξ are a basic solution system of the original equations. 
Example 2: Use the basic solution system to represent all the solutions of the following linear 

equations. 
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Solution The following is the corresponding augmentation matrix and transform it to the simplest 
form of rows using elementary transformation 
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Let 13 cx = , 24 cx = , where 1c , 2c are arbitrary constants, then 
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3. Conclusions 

This paper presents a new method for making out the basic solution system of homogeneous 
linear equations: 

(1) The coefficient matrix A of the linear equations is transformed into a row minimal matrix, and 
an equivalent equation system is written according to the row minimal matrix, 

(2) Let free variables be arbitrary constants ( )rnici −= 2,1 , 
(3) Propose a common factor (arbitrary constant) ( )rnici −= 2,1  using the nature of the vector 

itself,inferred :       

[ ] rnrn
T

nrrr cccxxxxxx −−++ +++= xxx  22112121 , 

Where 1ξ , 2ξ , , nξ is a basic solution system of the corresponding homogeneous linear 
equations. 

This solution method is applicable to both homogeneous and non-homogeneous linear equations. 
The solution to these two equations is completely the same and easy to use. The whole process only 
needs to simplify the general solution of the system of equations, which makes it easier for students 
to understand the nature of the basic solution system, and it is also convenient for them to establish 
the connection between the previous knowledge points. 
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