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Abstract: Three dimensional packing problem is widely used in many fields. At present, 

the research on off-line 3D packing of rectangular objects is more extensive, while the 

research on on-line 3D packing of rectangular objects is relatively simple. In this paper, an 

online constrained variable size sphere three-dimensional packing problem based on 

computer simulation technology is proposed, and the solution to this problem is given. Due 

to the different weight of the sphere, the sphere is divided into different levels of cell size, 

and the sphere is loaded into the appropriate rhombic dodecahedron to form cells, and then 

loaded; Furthermore, according to the weighted method, the competitive ratio in the 

bounded environment can be obtained, which solves the packing problem of the same kind 

of goods with different weights on the assembly line. 

1. Introduction 

The three-dimensional loading problem widely exists in the logistics industry such as port and 

airport. The optimization of three-dimensional loading problem is beneficial to reduce the cost of 

loading and logistics, and has become an important competitive node of enterprises. At present, the 

research on the rectangular shape of goods to be loaded is quite extensive [1]. If the loading 

algorithm does not know any subsequent cargo information when processing each cargo to be 

loaded in order,and immediately gives the packing scheme of the current cargo, it is called online 

packing. 

Kamali et al [2] packed equilateral triangles into squares in two-dimensional space. In the sphere 

packing, the sphere can be put into the cube, that is, origami technology [3] or cylinder [4] and then 

put into the box. 

In the problem of packing cubes into cell cubes, Han et al. [5] proposed an algorithm with an 

asymptotic ratio of 2.6161 in the online state. A recent survey conducted by Christense et al. [6] 

showed that in the two-dimensional or three-dimensional space, some bin packing methods adopted 

approximate algorithms [10], including offline and online algorithms [9]. Only hokama et al. [7] 

considered the competitive algorithm of online round packing: on the competitive ratio of any 

algorithm in bounded space, the lower bound of 2.292, an algorithm with asymptotic competitive 

ratio of 2.439, and a sphere with the same radius packing into a cube [8] were given. 

At present, there are few researches on the three-dimensional packing with the constraint of 

loading goods as spheres by using computer simulation technology, and the previous researches are 
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usually for the spheres with the same radius, which are relatively familiar with the rectangular 

packing, but not for the sphere packing under other constraints. This paper presents an online 

three-dimensional packing problem of variable size spheres with weight constraints. In this problem, 

the spheres to be loaded have different radii and weights. By using weight condition factor, the 

spheres are divided into different levels and loaded into the corresponding cell units (the diamond 

dodecahedron is used in this paper), and then the packing operation is carried out, The computer 

simulation results show that the method is feasible. 

It solves the actual loading problem of different weight and size spheres in real life online 

packing. 

2. Mathematical Model 

In this paper, the online packing of goods is about the packing of spherical objects. A sphere with 

a radius of ir  is filled. A sphere with a radius of i  means finding coordinates ix
, iy

, and iz
 

pointing to its center so that they can be next to the boundary of the container. For sphere j  

adjacent to ir , coordinates jx
, jy

, and jz
 have 

2222 )()()()( jijijiji rrzzyyxx 
. When packing, the unit box is divided into big box 

Lbin  and small box Sbin. When encountering different weights of spheres, they will be put into 

different boxes respectively. Here Lbin  and Sbin are only unit boxes. After that, we will further classify 

the spheres and containers to be entered, so that the small spheres in i  categories can enter Sbin, and the 

large spheres in i  categories can enter Lbin . 

Take a value of  , and let 6/6 iC p , because it is cut into rhombic dodecahedron, each 

rhombic dodecahedron can be called a cell. A ),( pibinq   is divided into a number of cells with 

 r sides to package the spheroid ),( pi . It should be noted that you can work normally only under 

the condition of )/(2/1 1 pp iCC 

. Because of CMi  , you must choose 2M , and the other   

must be accurate, so as to ensure that the cell can hold ),( pi . Figure 1 (left) shows the specific data 

relationship of cells. The specific process of packing is to place a cell in the lower left corner of the box. The 
cell has four faces parallel to the two sides of the box, and each face shares two non adjacent vertices with the 

other two faces. Figure 1 (right) below shows the relationship between cells and boxes. 

 

Figure 1: Specific numerical relationship of cell units (left); fill a ),( pibinq   (right) 

Theorem 2.1: for a closed duty cycle of type i and type Sbin, for MiM 3 , then the duty 

cycle of type i  and type Sbin is at least
3
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prove: In closed Sbin , the volume loss is caused by three factors 

(I) : there is a loss of space when the ball fills the diamond 

(II): loss when inlaid with rhombic dodecahedron and  ),( pibinq   
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(III): ),( pibinq   non full load 

For factor (I): packing type ),( pi   with volume of at least 3)
)1(3

2
(

3

4

ip

   into a rhombic 

dodecahedron with volume of 3)
63

6
(

9

316

ip

 , the occupation ratio is
3

3

)3(18 i

i  , that is, 

3

3

)3(18 M

M  . 

For factor (II): it can be observed from Figure 2 that when ),( pibinq   is filled, three parts are 

lost in the box. From face FFGG  , the depth of the missing block is at most 
ip3

4 , the height is 

13

1
p

, and the width is 
13

1
p

. From HEFG  sides, the depth of the missing block is at most 
23

8

ip

, 

the height is 
13

1
p

, and the width is 
ipp 3

4

3

1
1



 (the reason for the loss is that it intersects with the last 

block). As viewed from face FEFE  , the missing block has a depth of at most 
ip3

4 , a height of 

23

8

3

1
1

ipp




 (because it intersects the last block), and a width of 
ipp 3

4

3

1
1



 (because it intersects the 

first block). 

 

Figure 2: For the online cube sphere 

The darker rhombic dodecahedral cells are lost by subdividing a ),( pibinq   into a hexagon. The 

boundary of ),( pibinq   is a thick line. The lines and boundaries of the area between the dashed 

lines are considered missing. 

Therefore, it can be seen that the maximum volume lost in the diamond edge zone of ),( pibinq 

is: 

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),( pibinq   is filled in this way, its duty cycle is at least:
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For factor (III): when a Sbin is closed, for 0p  and the box is not full, there can only be one 

),( pibinq  ; Similarly, no )0,(ibinq   can be empty, but for each ),( pibinq   of 1p , it can be 

up to 133  ),( pibinq  . Therefore, the maximum volume loss caused by q  cases of ),( pi  that 

are not filled is:  

3

3
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 . Each enclosure Lbin  of type i  retains at most 

i  spheres of i  types. Because any sphere has a radius of at least 
1i , its occupancy ratio is at 
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least 3

1)34( ii  . 

With respect to the weight function w , the weight of a large sphere iI  is iIiw 1)(  . If the 

radius of a small sphere s  of type ),( pi  is r , its weight is )3(4)( 3 ORrsw  , so the algorithm of 

progressive competition ratio is obtained. 

3. Algorithm of progressive competitive ratio 

Accordingto hokama [7], we can deduce some properties of a sphere loaded into a lattice. Take 

three integers  、、 , and their values or ranges are 10  , 184   and    

respectively, and establish a series of spheres 10 , SS  Until
kS , in which 

kS  satisfies 

2)1()( kSV . Starting from SS 0
, for each 1n , build a nS  by adding 

1nS  with a radius of 

3/6 n  (of which 1 nn  , )(min
01 srSs ). For 1n , let 

)
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
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, suppose 1nS  can be packed into a unit 

box and one of the spheres is fixed. A rhombic dodecahedron is arranged on side 
n and placed in a 

box containing 1nS . 

According to theorem 2.1, the maximum volume of the disjoint rhombic dodecahedron and the 

element box is 
33
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rhombic dodecahedron is tangent to the interior of a sphere with a radius of r  and a center of P , 

the rhombic dodecahedron with a center of P  and a center of 3/2 nr   can be inscribed (see 

Figure 1 (left) for the model). Then the total volume is at least: 
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So, if each new sphere occupies the volume of dodecahedron 
18

 , it can get 

18
))(1)(()( 11


  nnn SVSVSV , so there is 0k , so that 2)1()( kSV , according to the transitivity 

angle, kS  can be loaded into box 
kSS 0
. 

4. Example 

Now let's take an example of N  disjoint kS . 
0S  has the property of i , iq sphere, radius 

between i1  andi . It should be noted that the optimal off-line solution uses N  boxes to pack such 

an instance, and considering the online algorithm, the radius of the sphere does not increase during 

the packing process. Any on-line algorithm in bounded space B  uses at least BiNqi /  boxes for 

each type of ball in 0S . Suppose sphere 
jn  with volume of 

jv  is added to 1JS  queue to 

construct 
jS . At present, the best density of sphere packing is 18 . Any algorithm uses at least 

BvNn jj /18  boxes to load 
jn  balls in bounded space B . 
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Because /)(2 BktN  , where t  is the number of spheres of different sizes in S  sphere, 

through the above analysis, any bounded space B  uses at least: 

0 1

18 18
( ) ( ) ( ( ) (1 2 ( )) ( )

k
i

j j

i S j
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B Nn v B N w S v S t k B

i
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  

         
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>





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N
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18
)(()(

2
)))(1(

18
)((  

To sum up, if a group of spheres are compressed into a box, the competition ratio of online 

algorithm in each bounded space is at least ))(1(
18

)( SVSw 


. 

5. Conclusions 

In this paper, an online constrained variable size sphere 3D packing scheme is proposed. In the 

online constrained variable size sphere packing, the size of the sphere to be loaded is divided into 

the sphere size range by a certain factor, and then the sphere size can be distinguished. Therefore, 

the corresponding Sbin  or Lbin  storage locations can be allocated. The online algorithm 

competition ratio of Sbin and Lbin  packing is at least ))(1(
18

)( SVSw 


, Furthermore, it can be 

concluded that the competition ratio of online approximation algorithm in bounded space is at least 

2.8809. 
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