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Abstract: This article mainly explores Tibetan speech recognition and reviews its 

development history. In recent years, end-to-end methods have been applied to Tibetan 

speech recognition. However, due to the lack of training data, the performance of the end-

to-end method is not ideal. Therefore, this article introduces the transfer learning method, 

which uses Mandarin as a same-language family language to train a pre-trained model that 

initializes the Tibetan speech recognition model. On the xbmu-amdo31 Tibetan public 

dataset, our method achieved an 11.8% relative reduction in phoneme error rate compared 

to the baseline system. This method not only enhances the performance of speech recognition 

in low-resource languages but also has the potential to be extended to other same-language 

family languages. Overall, this article highlights the importance of transfer learning in 

speech recognition and its potential impact on improving speech recognition systems in low-

resource languages. 

1. Introduction 

Speech is the simplest and most commonly used way of human communication. Enabling 

machines to understand human speech is of great importance for human-machine interaction. 

Automatic speech recognition (ASR) is a technology that aims to make machines understand human 

speech and convert it into corresponding text sequences. With the development of deep learning 

technology, speech recognition has maintained a high-speed development trend over the past decade. 

There are two main frameworks for speech recognition: hybrid architecture and end-to-end 

architecture. In recent years, with the continuous progress and performance improvement of the end-

to-end architecture, it has gradually become the mainstream method. After decades of development, 

speech recognition has reached a level comparable to that of humans for resource-rich languages such 

as Mandarin, English, and German, including speech recognition rate and speech interaction 

applications. However, research on speech recognition for Tibetan language started slowly around 

2005. 

So far, the effect of Tibetan speech recognition is still not ideal, mainly because it is difficult to 

obtain Tibetan audio and perform text annotation. Although some speech databases have been 

developed, most of them are small-scale data corpora. In the early research on Tibetan speech 

recognition, dynamic time warping [1] (DTW) algorithm was mainly used for isolated word 
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recognition. However, DTW algorithm has many limitations. Although its implementation is 

relatively simple, it has high requirements for endpoint detection technology and has high dependence. 

Therefore, researchers gradually began to use Hidden Markov Model [2] (HMM)-based methods for 

Tibetan speech recognition. Since 2009, researchers have started to implement Tibetan isolated word 

speech recognition based on HMM [3]. As research deepened, some improvement measures were 

proposed, such as feature enhancement based on resonant peak parameter extraction, statistics and 

analysis [4,5]. These improvement measures can be implemented at the feature level or the acoustic 

model level, and can further improve the effect of Tibetan speech recognition. Since 2016, researchers 

have started to apply neural networks to Tibetan speech recognition and combine them with HMM to 

further improve recognition performance [6]. Although there have been some minor improvements 

in Tibetan speech recognition, there is currently no better method in practice. 

Since the advent of end-to-end speech recognition in 2014, it has become the mainstream method 

of speech recognition. The input of this method is acoustic features, which directly output labels. 

Currently, there are three main structures: Connectionist Temporal Classification [7] (CTC), 

Recurrent Neural Network-Transducer [8] (RNN-T), and Attention-based Encoder-Decoder [9-12] 

(AED). For Tibetan speech recognition, this is both an opportunity and a challenge. The end-to-end 

method can make up for the lack of a standard pronunciation dictionary for Tibetan, but it requires 

support from a large amount of data, which is also a problem faced by Tibetan speech recognition. In 

order to solve this problem, this paper draws inspiration from the idea of transfer learning and 

attempts to use more resource-rich languages to assist in training Tibetan speech recognition models, 

thereby obtaining better recognition performance. 

Currently, the Conformer [13] model has been used in speech recognition. This model not only 

uses attention mechanism to focus on global features but also introduces convolutional modules to 

focus on local features, so it performs well in speech recognition. Considering the excellent 

performance of the Conformer model, this paper uses it as the encoder of the attention-based encoder-

decoder model for Tibetan speech recognition tasks, while its decoder is the same as the Transformer 

[14] model decoder. 

This paper is organized as follows. Section 2 will provide an overview of related work, Section 3 

will provide a detailed description of the method proposed in this article, followed by the presentation 

of experimental results in Section 4, and finally, a summary of this work will be provided in Section 

5. 

2. Related Work 

This paper uses an attention-based encoder-decoder approach, which effectively solves the 

sequence-to-sequence problem. This method does not require pre-segmentation and alignment of data. 

Through the attention mechanism, it can implicitly learn the soft alignment between the input 

sequence and the output sequence, thus addressing a major issue in speech recognition. The encoded 

results generated by this method are no longer limited to a single fixed-length vector. Therefore, the 

model can handle speech inputs of various lengths and still produce good results. 

However, using the attention mechanism alone is not sufficient to achieve ideal performance 

because in speech recognition, speech and output labels are usually monotonically aligned. Therefore, 

in order to better align speech features and label sequences, current practice often uses shared encoder 

attention mechanisms and CTC models for joint optimization in a multitask learning framework. The 

CTC model can enforce monotonous alignment, thereby improving the convergence of attention-

based models and alleviating alignment problems. Currently, this training strategy has become a 

standard training approach for attention-based speech recognition models. 
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2.1. Conformer Model 

The architecture of the Conformer model is derived from the evolution of the Transformer model 

encoder architecture. Compared with the Transformer model, the Conformer model not only relies on 

attention mechanisms and positional encoding but also introduces convolutional modules. The main 

structure of the Conformer model is composed of multiple stacked blocks. The input to the encoder 

is speech features, and the input sequence symbol is mapped to X = (x1, ..., xn). After the input X is 

processed by the encoder, a series of output mapping symbols H = (h1, ..., hn) are obtained. 

2.1.1. Multi-head Attention Mechanism 

The Transformer model first proposed the multi-head attention mechanism. This method is mainly 

used to solve sequence problems and can predict the output of different positions based on different 

focus points of the input. Compared with other attention mechanisms, the self-attention mechanism 

no longer relies on other network structures to learn to extract sequence features but directly obtains 

attention for the sequence itself, thus obtaining the desired attention features through the self-attention 

mechanism. The formula for the self-attention mechanism is shown in Equation (1): 

T

k

QK
Attention(Q,K,V)= softmax( )V

d
                      (1) 

Q, K, and V are feature matrices obtained by three matrix transformations of the input feature X, 

referred to as the query matrix, key matrix, and value matrix, respectively. In the self-attention 

mechanism, the input feature X is mapped to D-dimensional embedded feature X after embedding 

processing. Then, it is multiplied by three different weight matrices WQ, WK, and WV, respectively, 

to obtain the query matrix Q, key matrix K, and value matrix V. Next, the similarity between Q and 

K is calculated to obtain the attention score, as shown in Equation 1, by taking the inner product of 

the Q vector of the current feature and the K vector of all features in the sequence. To ensure the 

gradient stability of Softmax and prevent excessive results, the attention score is scaled by dividing 

by √𝑑𝑘 (where dk is the dimension of Q and K vectors). Then, the Softmax operation is used to 

normalize the attention score to obtain the attention weight. Finally, the attention weight is multiplied 

by the information matrix V to complete self-attention feature extraction and implement the self-

attention mechanism. 

The multi-head attention mechanism is another attention mechanism proposed at the same time as 

the Transformer model. It is based on the self-attention mechanism and performs a series of 

optimization operations. In the multi-head attention mechanism, multiple weight matrices WQ, WK, 

and WV are trained to generate multiple sets of Q, K, and V feature matrices. The attention feature 

extraction method for each set of feature matrices is the same as that for single-head self-attention 

feature extraction calculation. After generating multiple sets of feature matrices, they are 

concatenated. When outputting the final result, the concatenated multi-head feature matrices are 

transformed into the final output features using the weight matrix WO. Experiments have shown that 

different heads focus on different features, and the joint action of multiple heads can obtain better 

results. The formula for the multi-head self-attention mechanism is shown in Equation (2): 

1( , , ) ( ,..., ) O

hMultiHead Q K V Concat head head W                (2) 

where is the aforementioned self-attention feature. The weight matrix dimensions are, h is the 

number of multi-head attention mechanisms, and dmodel is the model dimension. 
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2.1.2. Depth Separable Convolution 

Depthwise Separable Convolution refers to a convolutional method that combines depthwise 

convolution and pointwise convolution. Compared with traditional convolution, it can effectively 

reduce the number of network parameters and improve computational efficiency. In depthwise 

convolution, only the dependency relationship between sequences within each channel is considered, 

not between different channels. Pointwise convolution, on the other hand, focuses on the dependency 

relationship between different channels, not within the channel. Combining these two types of 

convolutions can achieve the effect of traditional convolution with fewer parameters. 

2.1.3. Conformer Model Architecture 

 

Figure 1: Conformer Model Architecture [13] 

The overall architecture of the Conformer model is shown in Figure 1. First, it uses Convolution 

Subsampling to reduce the dimensionality of the input, which is then passed through a linear layer 

and dropout before being fed into multiple stacked Conformer blocks. Each Conformer block consists 

of three different modules: the Feed Forward Module, the Multi-Head Self Attention Module, and the 

Convolution Module. Residual connections are used between these three modules, with two Feed 

Forward Neural Network modules distributed at the beginning and end of the Conformer block. The 

outputs of both modules are multiplied by 1/2, then passed through layer normalization before being 

used as the output of the Conformer block. The formula for the Conformer block is shown in Equation 

(3). Finally, after passing through multiple Conformer blocks, the input obtains advanced acoustic 

features, which are then fed into the decoder for decoding, completing the entire process of the 

Conformer model. Using techniques such as depthwise separable convolution, residual connections, 

and multi-head self-attention, the Conformer model can achieve good performance. 

Here, X represents the feature sequence input to the conformer block, b is the batch size, l is the 

length of the feature sequence, and d is the feature dimension. FFN refers to the Feed Forward Module, 

MHSA refers to the Multi-Head Self Attention Module, and Conv refers to the Convolution Module. 

xi is obtained after passing through the four modules, residual connection, and layer normalization. 
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2.2. CTC Model 

CTC is a loss function used for speech recognition, which can solve the problem of hard alignment. 

Its goal is to map the speech input sequence to the output label sequence. Since the length of the 

output label is shorter than that of the input speech frame, blank labels are inserted between repeated 

output labels to construct a CTC path with the same length as the input speech frame. Specifically, 

the speech input sequence of the CTC model is represented as X, the original output label sequence 

is represented as Y, and the CTC path is obtained from Y through the mapping function B-1(y). The 

encoder network transforms the acoustic feature xt into a high-level representation henct, and then the 

CTC loss function is defined as the sum of negative log probabilities of all correct labels, As shown 

in Equations (4) and (5): 

CTCL = lnP(y | x)                                (4) 

1 ( )

( | ) ( | )
q B y

P y x P q x


                             (5) 

where q is the CTC path. Through the conditional independence assumption, P(q|x) can be 

decomposed into a product of frame posteriors: 

1

( | ) ( | )
T

t

t

P q x P q x


                             (6) 

where T is the length of the speech sequence. 

3. Training Optimization 

The training of end-to-end speech recognition requires a large amount of training data to achieve 

good performance. However, for low-resource languages, data scarcity is common, which can 

significantly affect the performance of the end-to-end models. Therefore, when training data is limited, 

improvements to end-to-end speech recognition techniques are necessary. 

End-to-end models consist of a single network, and therefore the model parameters are updated 

through gradient descent without the involvement of human expertise. However, the computation of 

gradients is strongly influenced by the data and model structure, and thus model performance is often 

affected by the features and model structure. Although designing deeper and more complex networks 

can better explore the relationships between speech features, larger models also introduce more 

parameters, leading to poor training results. Blindly training large models does not seem to be suitable 

for end-to-end speech recognition when training data is limited. 

The idea of transfer learning is to utilize knowledge learned from other domains to find similarities 

between two domains and apply knowledge from other domains to the target domain. Therefore, 

when training data is limited, directly using a model learned from the training data results in poor 

performance and can lead to overfitting or underfitting. Transfer learning can effectively use 
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knowledge learned from other domains to assist in model training, thereby preventing underfitting or 

overfitting problems and improving the performance of end-to-end speech recognition models. 

In this article, a well-trained model from a resource-rich language is used as the pre-trained model 

for the low-resource language. During the training process of the low-resource language, the pre-

trained model parameters of the high-resource language are first loaded as the initialization 

parameters of the low-resource language model. Then, the low-resource data is used to train the model, 

resulting in better speech recognition performance. 

4. Experiment 

4.1. Data 

The XBMU-AMDO31 corpus is a Tibetan Amdo dialect speech corpus collected and recorded by 

Northwest Minzu University. It contains 31 hours of speech data from 66 speakers, including 32 

males and 34 females. The speech data set is divided into training set, development set, and test set. 

The training set contains 18,539 sentences from 54 speakers, the development set contains 2,050 

sentences from 6 speakers, and the test set contains 2,041 sentences from 6 speakers. Each speaker 

provided approximately 450 sentences, with a few individuals providing less than 200 sentences. All 

experiments in this paper were conducted using 80-dimensional log-Mel filterbank features, which 

were computed using a 25-millisecond window and shifted every 10 milliseconds. These features 

were normalized using speaker-dependent mean subtraction and variance normalization. At the 

current frame t, these features were stacked with the preceding 3 frames on the left and downsampled 

to a frame rate of 30 milliseconds. 

4.2. Training 

Table 1: Acoustic model settings 

 Encoder Decoder 

Attention heads 4 4 

Linear unit 2048 2048 

Num blocks 12 6 

CTC/Attention 0.3 0.3 

Dropout rate 0.1 0.1 

Input layer Conv2d / 

Output size 256 / 

The experiments in this article used a Mandarin speech recognition model trained on the 

Wenetspeech [15] dataset as the pre-training model, and were trained using the ESPnet [16] tool. In 

model training, the Adam [17] optimizer was used, and the attention loss and CTC loss were jointly 

trained [18] with a weight ratio of 0.7:0.3. Label smoothing (with a value of 0.1) was also used during 

training. The modeling units used in this article were Tibetan syllables. First, random initialization 

was used to train the XBMU-AMDO31 dataset, although the training loss performed well, the actual 

recognition results were not satisfactory. Then, the Wenetspeech pre-training model was used to 

initialize the model encoder and decoder parameters, and the Softmax layer was replaced with a 

Softmax layer suitable for Tibetan. As a result, the experimental results showed good performance. 

Table 1 shows the experimental parameters of the model in this article. 

4.3. Results 

The results of the baseline system were obtained based on the data released by XBMU-AMDO31, 
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which can be found in Table 2. As can be seen from the table, the model initialized with pretraining 

performs significantly better than the model initialized with random initialization. Transfer learning 

methods can help the target model leverage knowledge learned in other domains for training, thereby 

achieving better experimental results with limited training data. 

Table 2: Results 

System Modeling Unit Dev CER Test CER 

Baseline System Syllable 14.8 13.8 

Pretrained Model Syllable 13.1 12.2 

5. Conclusions 

In this paper, we optimized the training process of Tibetan speech recognition and demonstrated 

the importance of transfer learning. Firstly, considering the correlation between languages, we chose 

Mandarin, which is a cognate language to Tibetan, as the source domain for transfer learning and 

used a pre-trained Mandarin model for initialization. This approach improved the performance of 

Tibetan speech recognition. Table 2 summarizes the comparison between this technique and the 

baseline system, proving the effectiveness of transfer learning in Tibetan speech recognition. 

Moreover, this method also provides insights for other low-resource speech recognition technologies. 
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