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Abstract: This paper discusses the development of a rapid simulation development platform 

based on CARLA and ROS. Firstly, the high cost and difficulty of algorithm verification in 

real-world experiments, mapping, and planning were introduced. The goal of accelerating 

research and development efficiency through the use of simulation development platforms 

was proposed. Based on these requirements, a multi-level platform architecture was designed, 

and the platform architecture, construction process, and related applications were introduced, 

creating a rapid development platform for autonomous driving simulation tasks. Finally, 

using mapping experiments and motion planning experiments as examples, the application 

of the rapid development platform was introduced. 

1. Introduction 

The functionalities of autonomous vehicles require extensive real-world testing to meet 

commercial demands before they can be put into commercial use. However, autonomous vehicle road 

tests face various issues such as high costs, traffic regulations, unclear accident liability, and low 

efficiency in extreme testing conditions. Using simulation platforms is an important solution to 

address the aforementioned problems. By building a simulation development platform for 

autonomous driving, relevant driving modules can be tested and validated in an offline environment, 

accelerating the development process.  

For the semantic mapping task of Automated Valet Parking (AVP) [1], most parking lots are 

indoors and cannot use the commonly used GNSS combination positioning system as the vehicle's 

position ground truth, resulting in a lack of verification methods for the established map. For the 

motion trajectory planning task, users often have a demand for custom maps to conduct planning tests 

in specific scenarios. To address these requirements, this paper proposes and develops an autonomous 

driving rapid simulation development platform. 

With the increasing demand for autonomous driving development and testing, the number of 

autonomous driving simulation software platforms is constantly growing, and their relevant 

functionalities are constantly improving. According to the software distribution method, they can be 

divided into commercial simulation software and open-source simulation software. Commercial 

autonomous driving simulation software includes Prescan, VIRES VTD, and others, while open-
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source simulation software includes Gazebo [2], CARLA [3], AirSim [4], and others. Most commercial 

software is independently developed by commercial companies and they do not disclose their 

underlying interfaces and source code to the public. 

Compared with commercial platforms, open source autonomous driving simulation platforms offer 

more open interfaces, which are conducive to secondary development and in-depth scientific research. 

AirSim [4], developed by Microsoft Research, is a simulation platform for unmanned aerial vehicles 

and autonomous driving based on the Unreal Engine. Its main goal is to serve as a platform for AI 

research, testing deep learning and end-to-end reinforcement learning algorithms, but its adaptability 

is relatively poor for mapping and planning tasks due to its lack of panoramic map output. CARLA 
[3], developed by the Computer Vision Center at the Autonomous University of Barcelona, can import 

customized scene maps and provides a configurable Python interface that supports flexible sensor 

and environment configurations. It can customize the import of relevant maps and communicate and 

simulate through a server-client architecture. Gazebo [2] is an independent robot simulation platform 

that can load custom simulation environments and provides many sensor plugins. Its dedicated text 

markup language can easily implement robot function configurations. Gazebo is currently the most 

compatible simulation tool for the Robot Operating System (ROS), which is the mainstream 

communication middleware for developing robots and autonomous driving systems. This article plans 

to build a rapid development platform based on autonomous driving simulator and ROS to test and 

verify mapping and planning algorithms. 

2. Platform Architecture & Implementation 

The quick simulation development platform employs a modular layered architecture, as shown in 

Figure 1, to achieve decoupling of different levels of software through encapsulation. The entire 

development platform consists of six levels, namely simulator, communication middleware, 

encapsulation module, application software, algorithm node, and interactive interface. 

 

Figure 1: Rapid Simulation Development Platform Architecture 
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The simulator includes a runtime environment, a world model, an agent model, and a sensor model. 

After the simulator is configured, simulation data is asynchronously communicated to the upper-layer 

application through the communication middleware. This paper uses data formats and communication 

middleware based on the robot operating system. The encapsulation module includes basic functions 

such as data synchronization, data sending and receiving units, and vehicle controllers that interact 

with the simulator, serving as a bridge between the application software and the simulator along with 

the communication middleware. The application software layer utilizes the encapsulated basic 

functions to accomplish more complex logical applications, such as processing sensor data, 

controlling the movement of multiple vehicles, and a recorder for data persistence. 

Each algorithm node is an independent running process that integrates application software and 

adds algorithm functions to jointly accomplish functions such as semantic mapping and motion 

planning, and displays corresponding results through the visualization module. Platform users can 

adjust and update algorithm modules to speed up system development by viewing the effects of 

relevant algorithms through the visual interface. The functions and construction process of each level 

will be detailed in the following sections. 

2.1. Simulation Environment Configuration 

The autonomous driving simulator is an important component of the platform and serves as the 

source of simulation data. Open-source simulators have better openness and scalability than 

commercial products, as modifications to the model can be directly made by editing the source code, 

and they are updated more frequently, making them more suitable for rapid development platforms. 

The rapid development platform uses data formats and communication middleware based on ROS, 

and CARLA and Gazebo have better ROS support in open-source simulators. Therefore, this paper 

explores the use of CARLA and Gazebo for simulation. 

The CARLA simulator is mainly used for autonomous driving road simulation, and a Python script 

can be used to write a client that communicates with the CARLA server. CARLA provides a rich 

environment of cities, straight roads, intersections, and crossroads, among many other different 

driving scenarios, and also provides basic path elements and topological connections, which provide 

strong support for simulating real driving scenarios and global planning work. Figure 2(a) and (b) 

show the non-layered map and aerial view map of Town02 in CARLA, respectively. 

 

Figure 2: a) Non-layered map b) Aerial view map 

The preceding section of requirements analysis also highlighted the need for more ground elements 

in semantic mapping, as well as the need for custom maps in motion planning. Furthermore, the map 

editor for CARLA is still immature, and modifying the map requires the support of multiple third-

party software, which is inconvenient. Another robot simulator, Gazebo, offers greater freedom in 
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map editing and is currently the best simulator for supporting ROS, with a wide range of plug-in 

support. It is mainly used for simulating robots. By writing world and model files to build the 

environment, Gazebo can also be used in the field of autonomous driving. Figure 3 shows a self-

constructed autonomous valet parking scene, which includes various types of ground marking 

elements, static pillar targets, dynamic vehicle targets, and more. Different categories of ground 

elements are distinguished by different colors: blue for parking space lines, magenta for lane lines, 

red for center dashed lines, yellow for indication signs, cyan for sidewalks, green for stop lines, and 

brown for deceleration zones. Gray pillars represent the pillars in the underground parking lot. In 

addition to the parking lot shown in the figure, there are multiple layouts of different parking lots 

with different parking space lines and ground markings. With the aid of dynamic vehicle targets, 

various parking environments can be simulated. 

 

Figure 3: Custom map scenes built in Gazebo 

Compared to the Unreal Engine used by the CARLA simulator, Gazebo's rendering engine is 

relatively simple. However, on the other hand, Gazebo consumes less computational resources, 

allowing for the use of more intelligent agents and sensors. After constructing the simulation 

environment, the next step is to configure the vehicle and sensor models. 

2.2. Vehicle and Sensor Configuration 

Regarding the necessary vehicle models, CARLA has pre-existing realistic vehicle models that 

can be directly used, whereas for Gazebo, one needs to build the model from scratch. In CARLA, the 

platform uses the Mercedes-Benz Coupe as the data acquisition car blueprint, whereas in Gazebo, a 

differential wheeled robot is used as the data collection vehicle. 

In the simulation development platform, software applications for image data recording and 

algorithm nodes need to construct a perception system using cameras. Hence, RGB cameras are 

mounted at different positions on the vehicle model for data collection, storage and subsequent 

environment perception tasks. In addition to the primary perception devices, additional sensors have 

also been configured to support simulation work. The specific sensor configurations and their primary 

functions are shown in the Table 1. 

The RGB camera at the front of the vehicle is used to capture the front view images, generate 

CARLA target detection data packages and support local storage and training. The image size 
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parameters and installation positions of some sensors are based on the corresponding settings of the 

data acquisition vehicles in KITTI [5]. 

 Table 1: Sensor Configuration 

Sensor devices Main function 

RGB Camera Providing environmental images 

GNSS Providing vehicle position information 

IMU Providing vehicle movement information 

Obstacle Sensor Providing dynamic and static obstacle information 

Collision Detector Providing auxiliary information 

Road Occupancy Detector Providing auxiliary information 

2.3. Communication Middleware and Packaging Modules 

The middleware is responsible for data transmission, as mentioned earlier. The rapid development 

platform utilizes the data format and communication mechanism of ROS. The most commonly used 

communication mechanism in ROS is the publisher-subscriber model. In this platform, the simulator 

will act as the publisher of messages and periodically send sensor data to all subscribers. Using the 

data sending buffer mechanism can achieve connectionless data transmission. When the publisher 

discovers that there are no subscribers, it will stop sending messages to save data bandwidth. 

In addition to the publisher-subscriber model, there is also a request-service mechanism. The 

requestor of the service will periodically send messages to the service provider, who will execute the 

relevant operation according to the established callback function after receiving the request. The 

request-service mechanism does not require periodic execution and is suitable for operations that are 

not convenient for high-frequency running, such as publishing large-scale map data. Due to its high 

computing power consumption, this mechanism is suitable for such applications. 

On top of the communication middleware, this article has self-developed basic encapsulation 

modules based on ROS. The purpose of these modules is to further encapsulate the interface of the 

communication middleware, encapsulate the functions of data sending and receiving in classes, 

handle communication buffers, data synchronization, data exceptions, etc. by themselves, and convert 

the data types used for communication in ROS to the data format defined in the algorithm. 

The encapsulation modules can reduce the cost of using middleware for data input and output in 

upper-layer software, allowing them to focus on the development of algorithm logic. 

2.4. Application Software and Algorithm Nodes 

The codes related to the platform application for both application software and algorithm nodes 

have been highly abstracted from the underlying simulator and simulation data. Both of them mainly 

focus on the implementation of algorithms and logical functional aspects.  

The difference lies in the fact that the application software needs to execute a certain task related 

to the simulator, such as receiving simulation data and performing post-processing, or controlling the 

movement of a certain agent in the simulator, and the relevant code is still directly related to the 

simulator or ROS middleware. On the other hand, the algorithm node only concerns data format and 

content, and does not distinguish between real vehicle test data and simulation experiment data at the 

algorithm node layer. Although there may be differences in the data format between real vehicle and 

simulation, such as the scale factor of AVM images, only different configuration files need to be 

called to adapt to different data, which enhances the adaptability and flexibility of the algorithm. 

The application software layer completely decouples data from algorithms, and related algorithms 

such as mapping, detection, calibration, planning, etc. can be directly deployed in the algorithm node 
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layer, each as an independent process to complete the simulation experiment task together. The output 

and intermediate results of the algorithm node will be displayed through a visual interface. 

2.5. Data Visualization and User Interface 

In algorithm development, data visualization is also a crucial aspect. In semantic mapping and 

motion planning, sensor data, intermediate results from algorithms, and system outputs all require 

visualization methods for qualitative or quantitative analysis. 

 

Figure 4: Data visualization and interactive interface 

There are already some visualization tools available for use with ROS, such as RVIZ [6], which 

can directly display data in ROS format through message subscription. However, for some 

intermediate results of semantic mapping systems, there is a lack of ROS data formats that can be 

directly applied. This necessitates the design of specialized visualization tools. 

At the top level of the platform is the visualization and user interaction tool. In this article, a 

corresponding graphical interface was designed based on third-party libraries QT and Pangolin, which 

allows users to view simulation data and intermediate algorithm results, as shown in Figures 4 and 5. 

In addition to data visualization, users can manually control the movement of the simulation vehicle 

through clicking interface buttons, allowing for flexible data acquisition. 

 

Figure 5: Data collection and visualization tools 
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3. Platform Applications 

Based on the rapid simulation development platform, various simulation experiments can be 

conducted. This section will introduce the mapping and planning simulation experiments based on 

the rapid development platform. 

3.1. Semantic Mapping 

In this section, we present a semantic-based map building system that includes image 

preprocessing, front-end, back-end, loop detection, and map optimization modules [7]. The mapping 

system utilizes semantic segmentation and semantic point cloud as the consistent data formats, 

making full use of perception information to construct highly consistent maps. The front-end utilizes 

integration on Lie groups to perform trajectory estimation, which is more accurate and effective than 

Euler integration, and keyframes are selected based on the trajectory estimation results. The loop 

detection module employs a two-stage detection algorithm based on semantic instances. The 

algorithm accurately identifies loop frames and generates loop constraints by computing the relative 

frame poses through up-sampled semantic point clouds. Loop detection and pose estimation can also 

be used for initialization in relocation tasks. The back-end solves the pose graph with inter-frame 

constraints, effectively eliminating some accumulated errors and improving the consistency of the 

semantic sub-map. The map optimization module obtains an optimized semantic map through 

semantic grid, completing the map building task. 

This experiment verifies the semantic graph building algorithm using several simulation 

environments built by the rapid development platform. The trajectory of single vehicle mapping 

contains multiple semantic elements involving multiple loops. Due to the influence of sensor noise, 

there may be certain errors between the trajectory obtained by trajectory estimation algorithm and the 

true value. These errors can be eliminated by using optimization algorithms. Different levels of sensor 

noise were set up in the single-vehicle mapping experiments to simulate the real scenario, and the 

mapping results are shown in Figure 6. 

 

Figure 6: Single-vehicle semantic mapping experiment 

In addition to single-vehicle mapping, this paper also conducted simulation experiments on multi-

vehicle collaborative mapping, as shown in Figure 7. Multi-vehicle collaborative mapping, also 

known as crowdsourced mapping, refers to the use of vehicles equipped with low-cost mass-produced 

sensors to replace the original high-cost, high-precision data acquisition vehicles for mapping tasks. 
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Figure 7: Multi-vehicle collaborative mapping experiment 

3.2. Motion Planning 

In order to perform local trajectory planning for structured roads, the Lattice Planner [8] based on 

the Frenet coordinate system [9] is used in this article. This approach is more suitable for high-speed 

scenarios, has low complexity, is easy to debug, and can meet the needs of mass production. Therefore, 

the main algorithm used for planning nodes in this platform is the Lattice Planner, whose process is 

as follows: 

(1) Convert the current vehicle pose information to the Frenet coordinate system to obtain the 

initial state of the vehicle in the Frenet coordinate system. The equations for converting the parameters 

in the Cartesian coordinate system to the parameters in the Frenet coordinate system are as follows: 
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(2) Calculate the lookahead distance based on the current velocity and obtain the target state of the 

vehicle at the lookahead point in the Frenet coordinate system. 

(3) Sample the trajectory state, including the trajectory time t, target velocity v, and lateral 

displacement d with respect to the reference line. These three planning parameters can be used to 

obtain the sampled state. 

(4) Construct the polynomial planning functions s(t) and d(s) for lateral and longitudinal 
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displacements, respectively. In order to ensure that the output trajectory can be executed by the 

vehicle controller smoothly, the high-order polynomial used to describe the vehicle motion trajectory 

must satisfy two requirements: the first derivative of curvature with respect to time must be 

continuous, and the first derivative of vehicle running acceleration with respect to time must also be 

continuous [10]. Using a third-order polynomial to generate a trajectory has a certain degree of 

smoothness, which can ensure the continuity of position and velocity, but cannot specify the boundary 

conditions of acceleration. In addition, the degree of smoothness will also be affected by kinematics 

and inertial loads. If a trajectory with continuous acceleration is required, it is necessary to determine 

the initial and final states of position, velocity, and acceleration, which will establish six boundary 

conditions. At least a fifth-order polynomial is required to describe the trajectory planning. In some 

specific scenarios, it may be necessary to define higher-order polynomials to increase trajectory 

smoothness, but as the order increases, the computation time of trajectory planning will also increase, 

which will affect the overall efficiency of the algorithm. Therefore, when the initial and final motion 

states of the autonomous driving vehicle are given, using a fifth-order polynomial to describe the 

motion process is the most cost-effective solution for the first derivative of acceleration with respect 

to time [11]. The fifth-order polynomial function is represented as: 
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(5) After obtaining the planning functions for lateral and longitudinal displacements, time 

interpolation is performed to obtain the trajectory points in the Frenet coordinate system with respect 

to the reference line. Finally, the trajectory points are transformed from the Frenet coordinate system 

to the Cartesian coordinate system to obtain the sampled trajectory in the physical world. Since both 

the lateral and longitudinal displacements are obtained through high-order polynomial interpolation, 

the resulting trajectory in the Cartesian coordinate system is also smooth. The equations for 

converting parameters in the Frenet coordinate system to parameters in the Cartesian coordinate 

system are as follows: 
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(6) The sampled trajectory is then subject to collision detection, curvature constraints, and optimal 

trajectory scoring. The sampled trajectory is a series of smooth trajectories that satisfy the velocity 

constraints, but it still needs to meet the strong constraints of collision avoidance and vehicle 

kinematic curvature, as well as the cost constraints of staying away from obstacles and approaching 

the reference line, etc. The purpose of scoring the sampled trajectory is to obtain an optimal, smooth 

trajectory that satisfies all the constraints. This trajectory is also the one output by the Lattice planner 
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to the controller for the vehicle to follow. 

Finally, in this section, all motion planning algorithm nodes were simultaneously run to test the 

entire closed-loop system, and the running conditions were observed. We conducted motion planning 

experiments on the CARLA TOWN02 map by randomly generating the starting position of the 

vehicle and manually setting the planning endpoint. Then we ran simulations to verify the 

effectiveness of the system. 

By selecting the endpoint of the planning task, the global planning node first searched for the 

global path and used it as reference line information. The local trajectory planning node generated a 

collision-free and smooth driving trajectory based on this information. Finally, the ROS RVIZ toolkit 

was used to visualize the vehicle, obstacles, and trajectory. In the simulation experiments on the 

TOWN02 map, several typical scenarios were captured to demonstrate the effectiveness of the 

algorithm, as shown in Figures 8-10. 

 

Figure 8: Lane-changing condition 

 

Figure 9: Following condition 
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Figure 10: Braking condition 

4. Conclusion 

The paper presents the setup of a rapid development platform based on CARLA simulator, 

covering various aspects such as platform architecture, simulation environment settings, and platform 

modules. The platform has been successfully tested through simulation for tasks such as semantic 

mapping and motion planning. 
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