
RSA Cryptosystem Speed Security Enhancement (Hybrid

and Parallel Domain Approach)

Moise Ngendahimana1,a,*, Wei Shen1,b

1College of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou,

Zhejiang, 310018, China
angendahimana_moise@hotmail.com, blatitude@123.com

*Corresponding author

Keywords: Cryptography; Pseudo-random numbers; Fast Exponentiation; Chinese

Remainder Theorem; RSA Encryption and Decryption; Linear Congruential Generator

Abstract: Encryption involves every aspect of working with and learning about codes. Over

the last 40 years, it has grown in prominence to become a prominent scholarly discipline.

Because most interactions now take place online, people require secure means of transmitting

sensitive information. Several modern cryptosystems rely on public keys as a crucial

component of their architecture. The major purpose of this research is to improve the speed

and security of the RSA algorithm. By employing Linear Congruential Generator (LCG)

random standards for randomly generating a list of large primes; and by employing other

selected algorithms, such as the Chinese Remainder Theorem (CRT) in decryption, exponent

selection conditions, the Fast Exponentiation Algorithm for encryption, and finally, a

comparison of the enhanced RSA versus the normal RSA algorithm that shows an

improvement will be provided.

1. Introduction

With the use of cryptography, sensitive information may be concealed from prying eyes. The

protection provided by urban touchable and physical devices against data access by unauthorized

parties is insufficient. Therefore, specialists and developers need to build and extend safety

mechanisms to protect data and prevent attacks from starting at such a crucial point. For this reason,

“encryption” was borrowed from elsewhere; it is a crucial component of any adequate safety system

and a prerequisite for any practical means of influencing or creating such a system. Skill is required

to keep the secret from random people. The importance of data encryption over simple message

transport is growing as our collective knowledge base expands. Cryptography is used to protect this

information, and it may be broadly classified into two subfields: secret-key and public-key

cryptography [1].

Today’s cryptography relies significantly on the principles of mathematics and computer science.

Due to the computational hardness assumptions used in their creation, cryptographic algorithms are

very difficult for an adversary to crack in reality. It is conceivable in theory to crack such a system,

but doing so in practice is currently impossible. Therefore, we call these methods ”computationally

Crypto and Information Security (2023)
Clausius Scientific Press, Canada

DOI: 10.23977/crypis.2023.020101
ISSN 2522-6436 Vol. 2 Num. 1

1

safe,” and we must always be adapting them to keep up with theoretical developments and quicker

processing power. Some systems, such as the one-time pad, are provably safe in terms of information

theory and cannot be broken even with infinite computing power [2]. These schemes, however, are

more difficult to put into practice than the best theoretically breakable but computationally secure

techniques.

The RSA algorithm relies on a certain prime number feature. The prime numbers: 2, 3, 5, 7, 11,

13, 17, 19, 23, 29, . . . are positive integers that can’t be written as the product of factors of integers.

In other words, any natural number bigger than one and divisible solely by itself and one is considered

prime.

Random numbers play a crucial role in cryptography, for example, in the generation of keys.

Random numbers used in cryptography must be generated in an unpredictable and random manner.

In other words, the process of creating new numbers should adhere to a regular pattern, and new

sequences of numbers should be impossible to predict based on existing sequences. Keeping an ear

out for radio or noise interference is a great approach to giving random number generation some real-

world context. In contrast, some methods rely on a piece of software called a ”Pseudo-random

Number Generator” to generate numbers that are statistically very similar to random [3].

1.1. Problem statement

The parallel domain (implementation of a parallel or multi-threading scheme), the hybrid domain

(combination of RSA and one or two other algorithms), and mathematical modifications in the “Core-

Modifications” category are the most popular domains for RSA variant proposals, according to the

systematic review [4]. With the common goal of improving overall execution speed and security, but

no studies even attempt to explore how these big prime numbers are generated, despite the fact that

this is one of the key causes of the RSA algorithm’s slowness. If RSA were faster, it would be a very

useful algorithm that could be employed in our everyday computing applications. As a result, we

should apply any strategy available to all RSA stages, from prime generation, key generation to

encryption-decryption, even if it is an addition or multiplication operation, as long as it is the quickest

way to optimize its total execution time, memory usage, security, and so on. The goal of this research

is to modify the Standard RSA Algorithm based on the public key exponent "e" and compute the

modulus N. For security and speed enhancement, we will use additional algorithms and mathematical

parallel implementations without making any changes to the Standard RSA basic mathematical

structure. With the algorithms utilized, the comparison will be confined to the Standard RSA

Algorithm and the Modified RSA Algorithm. The study’s goal is to emphasize the importance of the

RSA algorithm.

1.2. Our Contributions

A list of pseudo-random integers is generated using a linear congruential generator in order to

perform RSA key creation using the Rabin-Miller test method. To speed up the transmission of the

algorithm, this study introduced a unique RSA technique that employs LCG for prime generation,

CRT for decryption, and a smaller exponent e as a Fermat number less than the square root of Φ (n).

While using CRT to maintain the algorithm’s security, we also provided other security measures to

improve the algorithm’s security, such as unencryptable messages, paired private and public keys,

and the value of d having to be as large as the modulus N’s magnitude. All other suggested methods

and mathematical techniques were thoroughly discussed, and algorithm pseudo-codes and Python

code were provided. The normal RSA method is compared to the proposed smaller-exponent LCG-

CRT-RSA algorithm in the study. The results show that, when compared with normal RSA, the LCG-

CRT-RSA algorithm increases RSA encryption speed and data security. As a result of using a hybrid

2

and parallel domain approach, the study contribution increases the speed and security of the RSA

algorithm.

1.3. Organization

This research study is based on the speed and security of the RSA cryptosystem algorithm in hybrid

and parallel domain techniques. The paper is broken into sections. The introduction, problem

statement, outcomes, and contributions are all included in Part 1. Section 2 addresses the technical

background of cryptography; Section 3 examines the literature review, and Section 4 provides an in-

depth look at the RSA. Section 5 comprises all of the implemented methods and mathematical

methodologies for the improved RSA algorithm. Section 6 contains the improved RSA algorithm.

Section 7 delves deeper into the results and debate. Finally, Part 8 will summarize the research with

recommendations for future work, and the appendix section provides all of the Python codes used for

creating our modified RSA and results on GitHub [5].

2. Background

Cryptography ensures data integrity in information security, providing assurance that data has not

been altered with hash algorithms. One other benefit of using digital signatures is that they may be

used for non-repudiation or authentication of the parties involved [6], they are two types of

cryptography.

2.1. Symmetric key cryptography

Symmetric cryptography Figure 1 shows the simplest type of encryption when both parties use

the same secret key to encrypt and decrypt data. They are two distinct categories of symmetric key

cryptography designated by the quantity of data they are able to process: block ciphers and stream

ciphers. The block cipher organizes the input data into blocks or groups of consistent size (within a

few bytes), facilitating efficient encryption and decryption, while the stream cipher converts the data

format suitable for encryption and decryption.

Figure 1: Symmetric Cryptosystem.

Examples of symmetric encryption algorithms include Blowfish, AES, RC4, DES, RC5, and RC6.

One of the primary advantages of symmetric algorithms is their ability to be used in real-time systems,

which asymmetric algorithms cannot because each user needs their own unique key.

2.2. Asymmetric key cryptography

The use of two distinct keys is at the heart of asymmetric cryptography, commonly known as

public-key cryptography. When encrypting plain text with asymmetric encryption, two keys are used

a public one that may be shared openly and a private one that shouldn’t be revealed under any

circumstances. Asymmetric cryptography provides not just the privacy that encryption does but also

using digital signatures it is possible to acquire authentication, non-repudiation, and integrity. The

context of a signed message is compared to the input used to generate the signature [7]. To counter

3

the fact that anybody in possession of the secret key may read an encrypted communication,

asymmetric encryption makes use of a pair of keys that are mathematically connected to one another

Figure 2.

Figure 2: Asymmetric Cryptosystem.

RSA, DSA, and Diffie-Hellman are all examples of asymmetric algorithms. Using symmetric

cryptography with a straightforward and safe key exchange system enabled by an asymmetric key

method makes it possible to have a quick technique that generates compact cipher texts [8].

3. Related work

Many enhancements were made to the RSA algorithm by many researchers [4]. Some relevant

studies are included below:

For the hybrid domain, which is the improvement of Classical RSA and one or two additional

algorithms. Rebalanced RSA and Multi-Prime RSA were proposed by Boneh and Shacham [9]. A

strategy for integrating two previously improved RSA versions was developed by Alison et al. [10].

To increase the security levels and overall execution speed of the method, Gupta and Sharma [11]

integrated RSA with the Diffie-Hellman public key cryptographic technique. Based on an additive

homomorphic property, Dhakar et al. [12] introduced the MREA (Modified RSA Encryption

Algorithm), and they demonstrated that it is far more secure than the regular RSA and extremely

resistant to brute force attacks. The RSA and El-Gamal cryptosystems were joined by Ahmed et al.

[13] using the Discrete Logarithm Problem (DLP) for El-Gamal and the Integer Factorization

Problem (IFP) for RSA. For asymmetric cryptosystems, the pairing of IFP with DLP gave a

reasonable processing speed. The El-Gamal and RSA algorithms were less effective than the

indicated system computations as a result. In order to secure the upload of data to the cloud, Mahalle

and Shahade [14] presented an RSA variation that makes use of the AES method and three keys (a

public key, a private key, and a secret key). The authors’ conclusion is that this AES-RSA hybrid will

effectively give cloud users data security.

In order to make factorization more difficult overall, Arora and Pooja [15] proposed a novel

algorithm in 2015. This algorithm uses a hybrid of RSA and the El-Gamal algorithm. AES + RSA

and Twofish + RSA, a hybrid implementation of one symmetric algorithm with another asymmetric

algorithm, were recently proposed by Jintcharadze and Iavich [16]. They came to the conclusion that

RSA + Twofish outperforms the abovementioned hybrid algorithms in terms of speed and memory

use. Alamsyah and others [17] to increase the security of two-factor authentication, combined RSA

and the one-time pad approach.

For multi-threading or parallel techniques. C. W. Chiou [18] compares a fresh modular

exponentiation technique to reduce the time it takes for modular exponentiation to execute in 1993.

Because of fewer operations, this method offered a roughly 33% greater throughput. Ayub et al. [19]

developed an OpenMP-based parallel CPU-based RSA method implementation that parallelizes the

algorithm’s exponentiation phase to aid in speedy encryption and decryption. Their analysis

concludes that the program’s execution time has been improved. Rahat et al. [20] improved efficiency

by using a unique parallel data structure termed a Concurrent Indexed List of character blocks in 2019.

The essay presented three different simultaneous RSA implementations. With a possible speed-up

4

factor of 4.5.

For the CRT enhancements domain. Wu et al. [21] presented a CRT-RSA in 2001. Their proposal

use Montgomery’s algorithm rather than CRT, yielding better results for decryption and digital

signatures. Blomer et al. [22] presented another CRT-RSA for using CRT to solve fault attack

vulnerabilities on RSA-based signature algorithms. According to them, CRT-RSA is widely

employed in smart card transactions. Sony et al. [23] proposed using multiple keys and CRT to

improve data transmission security by increasing processing time and algorithm security. Quisquater

and Couvreur [24] proposed a rapid decryption technique in 1982. Based on previously reported

Standard RSA weaknesses, they developed an RSA deciphering method that employs an enhanced

modular exponentiation methodology and is based on the CRT, with the goal of increasing overall

performance time.

Finally, Aiswarya et al. [25] proposed a novel Binary RSA Encryption Algorithm (BREA)

encryption method in 2017. Its security is further increased by converting the encrypted cipher text

generated by the Modified RSA Encryption Algorithm (MREA) into binary code format. As a result,

the intruder will struggle to decrypt the data. In the same year, Sahu et al. [26] presented a more

secure approach than the original by making modulus n private as well.

4. RSA Algorithm

In 1977, Ron Rivest, Adi Shamir, and Leonard Adleman of the Massachusetts Institute of

Technology revealed the public description of the Rivest Shamir Adleman (RSA) algorithm [27]. The

system’s safety comes from the difficulty of factoring the products of two large prime numbers. This

difficulty is the foundation of the one-way RSA core function, which is straightforward to calculate

in one direction but prohibitively so in the other. Consequently, RSA is secure since it is

mathematically impossible to obtain such numbers or it would take too much time to do so, regardless

of the available computing power. In addition, the encryption’s safety is directly proportional to the

size of the key. An algorithm’s effectiveness increases exponentially when its size is doubled. Typical

bit lengths for RSA keys are 2048 or 4096.

RSA isn’t just used for encryption; it’s also the basis for digital signatures, in which only the owner

of a private key may ”sign” a message, but anybody can check its authenticity using the public key.

Several protocols, including SSH, OpenPGP, S/MIME, and SSL/TLS, rely on RSA signature

verification [28]. Many firms utilize RSA for personnel verification. Cryptographic techniques are

used in chip-based smart cards to ensure security by verifying the PIN code [29]. Pretty Good Privacy

(PGP), a freeware that provides encryption and authentication for e-mail and file storage applications,

also uses RSA for key transfer.

Furthermore, SSL provides data security by establishing an RSA key exchange during the SSL

handshake client-server authentication at the end of the connection between the internet-based

communications protocol TCP/IP and application protocols such as HTTP, Telnet, Network News

Transfer Protocol (NNTP), or File Transfer Protocol (FTP). The determinism of the original RSA

encryption means that the same plain text will always yield the same cipher text when using the same

key pair. Due to this feature, the technique is susceptible to a ”selected clear text attack,” in which an

attacker generates cipher texts randomly from a pool of known clear texts and checks whether or not

they are equal to previously generated cipher texts. An adversary can learn about the original data

without having to decrypt it by making this comparison [3].

4.1. Structure of Classical RSA algorithm

 Generate Large Prime numbers p and q.

 Calculate modulus N = P · Q.

5

 Calculate Phi Φ (N) = (P − 1) · (Q − 1).

 Select exponent e such that 1 < e < Φ (N) and gcd (e, Φ (N)) = 1.

 Compute d · e ≡ 1 (mod Φ (N)).

 Encryption C = Me (mod N).

 Decryption M = Cd (mod N).

5. Implementation of Algorithms

We used many theories and algorithm techniques to improve the total performance of the RSA

cryptosystem using our modified RSA algorithm from prime number creation through key generation,

encryption, and decryption. All of the approaches applied for the enhancement are listed here.

5.1. Linear Congruential Generator

Pseudo-Random Numbers are created deterministically (meaning that they can be replicated) and

must look independent, with no visible patterns in the numbers. We utilized this approach to quickly

construct a big list of odd integers for a subsequent primality test. The algorithm function’s Python

code is on my Github [5].

Xn+1 = P1Xn + P2 (mod m) where: n ∈Z+ (1)

Where Xn is the random integers generated, P1 is the multiplier, P2 is the increment, and m is the

modulus, X0 is the initial seed value of the series. As in [29] Linear congruential generator of

Equation (1) has a full period (cycle length of m) if and only if the equation meets the following

conditions:

 gcd(P2, m) = 1;

 P1 ≡ 1(mod p));

 P1 ≡ 1(mod 4);

With m = 2k, P1 = 4b + 1, P2 as an odd number where (b, k > 0) we will get a full period of length

m, for our RSA prime generation approach:

 The modulus m should be a known nearest prime from 2(n+1), n being the n-bits key, this value

is fixed (constant) in our approach.

 P1 is the multiplier with the condition of 4 k + 1 with k є [1, 2, 3, …] in our approach:

P1 = 4*10(n_digits − 1) + k (2)

Where k є [1, 3… 2i + 1]

 P2 is the increment and this is a variable, for reference, we took:

P2 = 10(n_digits) + k (3)

Where k є [1, 3… 2i + 1] hence P2 is an odd number.

 X0 is the seed and in our approach, we took any odd integer number of the same magnitude size

in our expected range,

X0 = 2(n−bits) + k (4)

Where k є [1, 3… 2i + 1]

ndigits = nbits * log 2 (5)

6

5.2. Miller Rabin Prime Primality testing

The Miller-Rabin primality test [31] is a probabilistic primality test that determines if a particular

number is likely to be prime, which is known to be the simplest and quickest test known; this test

employs Fermat’s Little Theorem [2]. We need to generate two huge prime numbers during the RSA

key generation process, and after that, we need to ensure that they are indeed prime. Let us verify “n”

primality ⇐⇒ n is an odd number.

Algorithm 1: Miller-Rabin primality test

Find integer k and m such that: n − 1 = 2k · m

Choose randomly any integer a ε [1, n − 1]

Compute b0 = am mod n

Compute bi,”k” times, bi = 𝑏𝑖−1
2 mod n

The result must be ±1:

If the solution is 1, n is a composite number and if the solution is -1, n is a prime number.

Repeat the test “i” times. The probability of a composite n passing “i” tests is 1/4i; for our

implementation the probability is 2−128. GitHub repository [5] has a Python code of this algorithm.

5.3. Karatsuba Multiplication Algorithm

Algorithm 2: Karatsuba Recursive Algorithm

Begin

INPUT: P, Q

OUTPUT: Product ← P · Q

if P < 10 or Q < 10 then

return P · Q

else

n ← val(max digits number of P or Q)

P ← 10n/2 · P1 + P0

Q ← 10n/2 · Q1 + Q0

P · Q ← 102(n/2) P1Q1 + 10n/2(P1Q0 + P0Q1) + PoQo

to ← karatsuba (Po, Q0)

t12 ← karatsuba (P1 + Q0, Q1 + Q0)

t3 ← karatsuba (P1, Q1)

return 102(n/2) t3 + 10n/2t12 + t0

end if

End.

Karatsuba algorithm is a fast multiplication algorithm [32]. We choose this approach for

computing the modulus N = P·Q and Φ (N) for fast computing. This algorithm reduces the

multiplication of two n-digit numbers to three multiplications of n/2-digit numbers and, by repeating

this reduction, to at most n 𝑙𝑜𝑔2
3 ≈ n1.58 single-digit multiplications See Algorithm [2]. It is therefore

asymptotically faster than the traditional algorithm, which performs n2 single-digit products.

5.4. Extended Euclidean algorithm

Euclid’s algorithm if gcd (a, b) = d, then there exist integers x, y such that ax + by = d.

The first step in the Euclidean method is to divide the bigger integer, a, by the smaller number, b,

to get the quotient, q1, and the remainder, r1(less than b),

a = q1b + r1

7

Next, we’ll use b and r1 to go on in the same manner, eventually arriving at the value:

b = q2r1 + r2

rn−2 = qnrn−1 + rn

Finding the largest common divisor is complete after we have achieved rn|rn−1. This is shown by

the evidence below: After solving for rn−2 = qnrn−1 + rn, in the previous step, we arrive at the

following equation:

rn−2 = qnrn − 1 + rn

Now, suppose d is the gcd of a and b. So we get <d|a and d|b>.

Hence, we get rn as the Greatest Common Divisor (gcd) of a and b.

5.5. Fermat’s Little Theorem

Fermat’s Little Theorem Let a ∈ N and p be a prime number, then:

ap ≡ a mod p (6)

ap−1 ≡ 1 mod p (7)

5.6. CRT Chinese Remainder Theorem

A system of two or more linear congruencies does not necessarily have a solution, even though

each of the individual congruencies does [33]. The Chinese Remainder Theorem CRT describes the

solutions for a system of simultaneous linear congruencies.

x ≡ a mod m and x ≡ b mod n

have a unique solution if the modules are relatively prime to each other, two to two. Where gcd

(m, n) = 1.

Let m1, m2 . . . mk be a set of relatively prime numbers two by two, gcd (mi, mj) = 1 where i ≠ j

Let a1, a2 . . . ak be arbitrary integers. The system of simultaneous congruencies:

{

𝑥 ≡ 𝑎1 𝑚𝑜𝑑 𝑚1

𝑥 ≡ 𝑎2 𝑚𝑜𝑑 𝑚2

…
…
…

𝑥 ≡ 𝑎𝑘 𝑚𝑜𝑑 𝑚𝑘

Let M = m1 · m2 · · · · mk and Mk =
𝑀

𝑚𝑘
, gcd (Mk, mk) = 1, Each Mk admits a unique inverse 𝑀𝑘

−1

modulus mk below:

Mk · 𝑀𝑘
−1 = 1 mod mk

Therefore, the system has a unique solution x = y mod M:

(a1M1𝑀1
−1 + a2M2𝑀2

−1 + · · · + akMk𝑀𝑘
−1) mod M (8)

5.7. Fast Exponentiation Algorithm

The speed with which we can calculate Me (mod N) for integer n of this magnitude is a significant

aspect of public-key cryptography. The integers used in modern RSA keys are at least 1024 bits long.

8

The traditional method for raising to a power, say x8 is as follows:

x 𝑆𝑞𝑟 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ x2 𝑀𝑢𝑙 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ x3 𝑀𝑢𝑙 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ x4 𝑀𝑢𝑙 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ x5 𝑀𝑢𝑙 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ x6 𝑀𝑢𝑙 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ x7 𝑀𝑢𝑙 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ x8

Where Sqr means squaring and Mul means multiplying.

We squared first, followed by six successive multiplications, a total of seven operations. In RSA,

we would have to execute 21024 multiplications for a power of 1024 bits, which is not at all

convenient. The square and multiply algorithm is the fastest way to perform this exponentiation.

Consider the same example shown above to calculate x8 using square and multiply algorithm:

x 𝑆𝑞𝑟 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ x2 𝑆𝑞𝑟 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ x4 𝑆𝑞𝑟 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ x8

We only need 3 squaring operations, note that the square and multiplication operation has the same

time complexity.

To know the number of squaring and multiplying operations required we convert the exponent to

its binary equivalent, where we have ”1” we square and multiply in that order, and where we have ”0”

we apply square operation only, This method is called the Fast exponentiation algorithm [34]. See

Algorithm [3].

Algorithm 3: Fast Exponentiation Algorithm

Begin

INPUT: M, e, N

OUTPUT: X ← Me (mod N)

Convert Exponent e to Binary Base2

B ← bk−1bk−2…bi…b2b1b0

X ← M (mod N)

i ← k − 1

while i > 0 do

X ← X2 (mod N)

if bi = 1 then

X ← X·M(mod N)

end if

i ← i − 1

end while

Return (X)

End.

5.8. Recommendations to select the value “e”

We recommended using a very small public key value "e" less than√Φ (n). Therefore the trap

Φ(n) = (p − 1)(q − 1), p and q being primes of at least 1024 bits, and the size of Φ(n) will be

approximately equal to that of n, a little smaller but with the same magnitude(number of bits). Since

the public key "e" and the private key "d" are inverses in the field Φ (n), that is, d = inv [e, Φ (n)]

then we get the following relation e·d (mod Φ (n)) = 1, for this equality to hold, the product "e·d"

must leave the field Φ (n) at least once so that the operation in that module returns the value 1. In

other words, it will be true that e·d = k·Φ (n) + 1, with k = 1, 2, 3, 4...

For this product to come out at least once from the body Φ (n), that is with k = 1, given that the

public key “e” has for example 17 bits, the value of the private key d should be at least greater than

1007 bits, for the hypothetical case (and with almost null probability) that the equation is fulfilled for

k = 1. In practice, that value of k = 1 or a low value of k, will be very unlikely and, therefore, we can

9

expect a private key “d” very close to or equal in bits to the value of n as it happens in the practice.

In other words, it will be computationally difficult to guess the value of the private key d, since finding

a number within a 1024-bit body means an intractable computation time, with an average of 21023

attempts [35]. Forcing then the public key e to being a small value, less than 20 bits within a body of

1024 bits or greater guarantees that the private key d is a very large value and, therefore very secure

since it is computationally intractable to find it by brute force.

In our model, we will choose value “e” from Fermat’s numbers less than√Φ (n), and since all

Fermat’s numbers are prime numbers we won’t necessarily need to check if gcd(e, ϕ(n)) = 1 which

saves time. This relatively small value of “e” forces the private key “d” to have a size similar to the

modulus n and makes a brute force attack impractical. For example the value 65537 a known prime

number as Fermat number (F4) was used to create the SSL certificates See Figure 3.

[Fermat’s prime] Fn = 22
𝑛
 (9)

In addition to the advantages mentioned, Fermat primes such as F4 have a significant feature that

is worth highlighting. The binary representation of F4 has only two one bits equal to 65, 53710 =

100000000000000012 = 01000116. This fact has great utility in exponentiation computational

efficiency.

Figure 3: RSA2048 SSL Key Certificate.

5.9. Paired private and public keys

When an RSA key is generated, Euler’s thotient function Φ (N) is used as a trap to calculate the

private key "d" knowing the public key "e". Since (e, Φ(N)) = 1, it is guaranteed that the inverse “d”

exists and that it is the only inverse of “e” in that field Φ(N). The encryption is done afterward in the

public body N so that anyone can use it. And in said body N it is no longer satisfied that the only

inverse of the public key “e” is the private key “d”. There is at least one other value other than a “d”

that allows deciphering what is encrypted with the public key.

These keys are called paired private keys. It has been said that an asymmetric cipher system has a

single public key, and therefore also a single private key. For the RSA cryptosystem, this has turned

out to be false. An example will better illustrate this.

Example: Let us take an RSA key with P = 37, Q = 57, e = 13, and d = 1861

N = P·Q = 2109

Φ(N) = (P − 1)·(Q − 1) = 36 · 56 = 2016

We will encrypt the Message 1001 with the public key (N, e) = (2109, 13) and then we will get.

Cipher−text: C = 100113 mod 2109 = 1421

Plain−text: M = 14211861 mod 2109 = 1001

10

We naturally get the original message. Let us now use the numbers 349, 853 and 1357 as if they

were the private key d:

d = 349, M = 1421349 mod 2109 = 1001

d = 853, M = 1421853 mod 2109 = 1001

d = 1357, M = 14211357 mod 2109 = 1001

That is, for the ciphered body N = 2109 with public key e = 13, the numbers 349, 853, and 1357

are paired private keys d0 that fulfill my function more than the private key d. Every RSA key will

have at least one matching private key. The number of even private keys depends strongly on the

primes P and Q.

5.10. Unencryptable messages

One of the security vulnerabilities are non-recommended keys that either do not encrypt the

information to protect or do so in a predictable way. For example, in the symmetric algorithm DES

(Data Encryption Standard), there were weak or semi-weak keys, which did not satisfy the single-

digit principle enunciated by Shannon; and gave solutions known as false solutions. Something

similar happens in RSA, where there are unencryptable messages, or rather, unencryptable numbers.

0key mod N = 0 and 1key mod N = 1 (10)

Another value that is transmitted in the clear is (n - 1), since:

(N − 1) key mod N = (N − 1) (11)

Example: Consider the RSA key with n = 17 · 29 = 493 and e = 11, we have:

{
011𝑚𝑜𝑑 493 = 0
111𝑚𝑜𝑑 493 = 1

49211𝑚𝑜𝑑 493 = 492

In addition to these three numbers, in RSA there will always be another 6 numbers that are not

encrypted.on our example:

{

8611𝑚𝑜𝑑 493 = 86
20311𝑚𝑜𝑑 493 = 203
20411𝑚𝑜𝑑 493 = 204
28911𝑚𝑜𝑑 493 = 289
29011𝑚𝑜𝑑 493 = 290
40711𝑚𝑜𝑑 493 = 407

To locate these unencryptable numbers requires a brute force encryption attack on the space of the

primes p and q, to verify the values of X that yield the following inequalities:

Xe (mod P) = X and Xe (mod Q) = X for 1 < X < Q – 1, P-1

Keys of 1024 bits or more make calculations within the primes p and q computationally intractable

if each has at least 512 bits. Therefore, for those keys, it will not be possible to find the remaining

unencryptable numbers. The equations to calculate the unencryptable numbers are shown below:

The number of unencryptable numbers σn within a field n is:

σn = [1 + (e − 1, p − 1)][1 + (e − 1, q − 1)] (12)

The unencryptable numbers will be:

11

N = [q·(inv (q, p)) · Np + p·(inv (p, q)) · Nq] mod n (13)

Where:

Np are the solutions of Ne mod p = N and Nq are the solutions of Ne mod q = N

As can be seen, the only complicated calculation that occurs is in the last two equations, which

means attacking by brute force all values of N candidates to be non-cipherable numbers, with

1 < N < (P − 1) for prime P and 1 < N < (Q − 1) for prime Q

6. Optimised RSA algorithm

For our modified RSA, we drew the following conclusions concerning the sizes of the operands:

 Carefully select the prime numbers p and q such that factoring them would be computationally

unfeasible. As a rule of thumb, the bit lengths of these primes should be roughly comparable. For

example, if the number n is 1024 bits in length, then the appropriate sizes for p and q are

approximately 512 bits.

 The exponent is typically small in order to maximize the power of the exponentiation.

6.1. RSA Modified

 Generate Large Prime numbers p and q generate truly unpredictable random numbers list using

LCG Section 5.1, then tests for primality we used Rabin-Miller probabilistic test Section 5.2.

 Calculate modulus N = P · Q

 Calculate X to replace N. X = N − (P + Q)

The key length, which is commonly stated in bits, determines its size. We recommended the

Karatsuba algorithm Section 5.3 for N computation. The Karatsuba approach begins to pay off as n-

digits increase, as it can multiply hundreds of digits quicker than the standard technique.

 Calculate Euler’s totient function, which is defined as: Φ(N) = X + 1

Reduced multiplication of (P-1) (Q-1) of O (n2) computing time to addition operation in O (n)

computing time.

 Calculate exponent e as a fermat number See Equation (9) such that:

e < √Φ(N)

 Compute private key d·e mod Φ(N) = 1

In practice, we applied Extended Euclidean algorithm Section 5.4 for fast computation of this

value. d bits should be close to N-bits so that it would not be easy to get any other paired private keys

d0 for security purposes.

 Generated Keys: Public Key = (e, N) and Private Key = (d, N)

 Encryption Cipher-Text C = Me (mod N)

In practice, we used Fast Exponentiation Algorithm [4] for fast computation. M ∈ [2, n − 2] as in

Equation [10] [11] and M not an unencryptable numbers See Equation [12].

 Decryption Plain-Text message M = Cd (mod N)

We proposed to use CRT Section 5.6 and Fermat’s Little Theorem 5.6 for fast computation and

monitoring security.

6.2. RSA Modified Example

We begin by walking over on how to generate RSA encryption and decryption keys. After that,

we’ll go through a basic example to see how encryption and decryption work in practice.

12

 Two prime numbers “P” and “Q” are chosen. At present, such numbers must be of the order of

1024 bits, at least. For our example, Let us use a 16-bits prime for illustration

n_digits = 16 log 2 = 5

Using Equation (5) we should generate 5 digits prime numbers. Using our LCG approach Section

5.1 Equation (1)

X0 = 2n_bits−1 + 1 = 215 + 1

P1 = 4 · 10n_digits/2 + 1 = 4 · k + 1

P2 = 2n_bits−1 + 7 = 215 + 7

m = 2n_bits+1 + k = 217 + 29

where P1 is variable, P2 is an odd variable number, and m is the constant nearest prime. Running

the Python code on [5] we get:

Real Primes: [2357, 23321, 83437, 33967, 118681, 96223, 44927, 129221, 35531, 67699] in

0.0008182525634765625 seconds.

We choose P = 23321 and Q = 67699.

 Calculate the modulus N,

N = P·Q = 23321 · 67699

N = karatsuba (23321, 67699) = 1578808379

X = N − (P + Q) = 1578717359

 We calculate the value of Φ (n).

Φ(n) = X + 1 = 1578717360

√Φ(n) = 39733

 A fermat's value of “e < 39733” is chosen. We will take Fermat number three.

e = F3 = 22
3
 + 1 = 257 < 39733

, since all Fermat’s numbers are primes therefore gcd (257, 1578717360) = 1.

 Calculate d, the multiplicative inverse of module n.

Since gcd (e, Φ(n)) = 1, we will apply Extended Euclidian algorithm [1] to express 1 as a linear

combination of integer u and v such that:

e · u + φ(n) · v = 1 (14)

1 = 14 − 13

1 = 14 − (27 − 14)

1 = 2 · 14 − 27

1 = 2 · (257 − 9 · 27) − 27

1 = 2 · 257 − 19 · 27

1 = 2 · 257 − 19(1578717360 − 257 · 6142869)

1 = 257(2 + 19 · 6142869) + 1578717360 · −19

1 = 257 · 116714513 + 1578717360 · (−19) (15)

13

Equation [14] into [15] we get u = 116714513 and v = −19.

With the multiplicative inverse modulo n

d = 116714513

 The Message M Encryption C = Me mod N.

For our illustration let us encrypt a message M = “123456”:

C = 123456257 mod 1578808379

Applying Algorithm [3]

Step 1: First compute the binary representation of the exponent “257”.

25710 = 1000000012

Step 2: Read the binary representation of the exponent from left to right.

1000000012 = b0b1b2b3b4b5b6b7b8

Step 3: For every subsequent bi = 1 apply square and multiplication while every subsequent bi = 0

we apply the square operation only.

Step 4: x 𝑺𝒒𝒓 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ x2 𝑺𝒒𝒓 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ x4 𝑺𝒒𝒓 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ x8 𝑺𝒒𝒓 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ x16 𝑺𝒒𝒓 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ x32 𝑺𝒒𝒓 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ x64 𝑺𝒒𝒓 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ x128 𝑺𝒒𝒓 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ x256 𝑴𝒖𝒍 ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ x257

Table 1: Me (mod N) calculations.

(257)2

b0 = 1 12 · 123456 mod 1578808379 123456

b1 = 0 1234562mod1578808379 1032108525

b2 = 0 10321085252 mod 1578808379 565223769

b3 = 0 5652237692 mod 1578808379 925099202

b4 = 0 9250992022 mod 1578808379 1485289910

b5 = 0 14852899102 mod 1578808379 808794854

b6 = 0 8087948542 mod 1578808379 312569668

b7 = 0 3125696682 mod 1578808379 926477909

b8 = 1 9264779092 · 123456 mod 1578808379 1080549941

We have to perform 8 squaring and 1 multiplication only. We have, therefore:

x257 = 𝑥1000000012 = 𝑥𝑏0𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7𝑏8

Using the fast exponentiation Algorithm [4], to loop through the bits of the exponent, starting at

b0 to b8.

This completes the encryption process See Table 1, give Cipher-text:

C = 123456257 (mod 1578808379) = 1080549941

 For Decryption M = Cd (mod N) = 1080549941116714513 (mod 1578808379)

Since both P and Q divide N, we can write the above equation as:

M1 = 1080549941116714513 (mod 23321)

M2 = 1080549941116714513 (mod 67699)

We now reduce the bases by their respective modules:

M1 = 18048116714513 (mod 23321)

M2 = 6202116714513 (mod 67699)

The exponents are also reduced:

116714513 = (23321 − 1) · 5004 + 21233

116714513 = (67699 − 1) · 1724 + 3161

Solving the first exponent:

14

M1 = 180485004
(23321−1)

 · 1804821233 mod 23321

Applying Fermat’s Little Theorem [4], Fermat’s Equation (7) we get:

M1 = 1804821233 mod 23321 = 6851 mod 23321

Solving the second exponent:

M2 = 62021724
(67699−1)

· 62023161 mod 67699

Applying Fermat’s Little Theorem [4], Fermat’s Equation (7) we get:

M2 = 62023161 mod 67699 = 55757 mod 67699

We thus have the system of congruencies:

{
𝑀 ≡ 6851 𝑚𝑜𝑑 23321
𝑀 ≡ 55757 𝑚𝑜𝑑 67699

Solving the above system using the CRT, we get:

{
6851 · 67699 · 9075 ≡ 6851 mod 23321

55757 · 23321 · 41355 ≡ 55757 𝑚𝑜𝑑 67699

Compute:

(6851 · 67699 · 9075) + (55757 · 23321 · 41355) = 57983316650610 mod (23321 · 67699) =

123456

Plain-text message M = 123456 as expected.

7. Results and discussion

7.1. Prime Generation Comparison

Table 2: Prime Generation Comparison.

KEY SIZE LCG

Run-time/sec

Random odd number

Run-time/sec

LCG Generated primes Random odd

Generated

16 bits 0.00289559364 0.00202369054 9 primes / 10 odd numbers 1 prime

32 bits 0.00123167037 0.00262594223 5 primes/10 odd numbers 1 prime

512 bits 0.50483727455 0.28248929977 2 primes / 150 odd numbers 1 prime

1024 bits 7.26790904998 7.31390762329 7 primes / 200 odd numbers 1 prime

2048 bits 16.5216593742 17.60818386077 1 prime / 200 odd numbers 1 prime

Figure 4: LCG Prime Generation versus Random Odd Number Prime Generation.

We also want to look into the temporal complexity of each method. In this situation, we’re

interested in the algorithm’s efficiency, or how long it takes the function to generate at least two prime

integers. As shown in Table 2, traditional prime generation always yields a single prime number by

randomly selecting an odd number and testing for primality, however, our suggested LCG prime

15

generation method yields a list of primes in a short time. Figure 4 illustrates a graph.

7.2. Key Generation

Consider n as the number of bits of P or Q both prime and N as the product of P and Q.

7.2.1. Modulus computation

The time complexity to compute the modulus N product of two big primes P and Q of the same

bit size is (𝑙𝑜𝑔2
𝑝
) 2 using big O-natation that is O (n2). By using the Karatsuba algorithm Section [5.3]

the time complexity goes down to O (n𝑙𝑜𝑔2
3) approximately O (n1.58).

7.2.2. Thotient computation

The time complexity to compute Φ (N) product of two large integers (P − 1) and (Q − 1) of the

same bit size is (𝑙𝑜𝑔2
𝑝
) 2 using big O-natation that is O (n2), by substituting X = N − (P + Q), Φ (N) =

X + 1 the time complexity goes down to O (n)

7.3. Encryption

7.3.1. Making the exponent smaller vs Classical RSA

In making an algorithm faster, we can actually use a small exponent and still RSA will be secure,

In Table 3 changing the public key exponent e to the binary representation we can tell the number of

operations that are required for the square multiply algorithm using exponentiation, fast encryption

is possible using this small exponent and RSA is still secure for short.

Table 3: Small e operations.

Public Key “e” “e” in binary Operations

𝟐𝟐
𝟎
+ 1 = 3 112 3

𝟐𝟐
𝟐
 + 1 = 17 100012 5

𝟐𝟐
𝟒
+ 1 = 216 + 1 100000000000000012 17

𝟐𝟐
𝒏
+ 1 1(2n – 1 zeros)12 2n + 1

7.3.2. Cipher-text

C = Me (mod N)

Normally e can be in range [1, Φ (N)] therefore the worst-case scenario e can also have n-bits.

Time complexity T: O ((log n2) (log n)) = O (log n3)

By applying fast modular exponentiation [4] and making e a small value in the range [1, √Φ (N)].
Time complexity T: O (log n2/2 log n) = O (log n2).

7.4. Decryption

To compute M = Cd (mod N) in general, d is a large integer almost the same size as N

Time complexity T: O (log n2 log n) = O (log n3)

By applying the Chinese Remainder Theorem (CRT) knowing P, and Q as factors of N we can

compute M as:

M1 = Cd mod p and M2 = Cd mod Q

M1 = 𝐶𝑑1 mod P and M2 = 𝐶𝑑2 mod Q

16

Where: d1 = d mod (P – 1) and d2 = d mod (Q – 1)

Lastly compute M as:

M = M1 + P [(M2 − M1) P−1 mod Q]

The public exponent “e” can be smaller in this case, but “d” must be as big as “N” now, thus we

applied the Chinese remainder theorem (CRT) to accelerate decryption. This technique lowers n_bits

modular exponentiation into two n/2_bits modular exponentiations plus the CRT steps described

above, while P−1 can be precomputed and saved. The Chinese remainder theorem, according to Table

4, is substantially faster at the expense of system parameters and memory, and it does not require any

modular inversion implementation, saving development costs and memory. As illustrated in Figure

6, 7 and 8 both the CRT and decreasing the exponent need less processing time than the standard

RSA. Because it adds randomness to the cryptography method, RSA’s improved performance

increases speed and security.

Table 4: CRT system parameters memory cost.

Register Names Bits Number of registers

N,M n 2

M1, M2, P, Q n/2 4

P-inverse n/2 1

Subtotal 9 n/2

P-inverse n/2 1

Accumulator

v n/2 1

Subtotal n/2

Total memory cost 5n

7.5. Comparison of Total Time Complexity

The time complexity study of the enhanced RSA method and the traditional RSA algorithm will

now be described using big O notation. For time complexity operations, we have the following

features, as described by [36] and [37]:

Sum (x + y), the sum of two n-bit values has a time complexity of O (n).

Subtraction (x - y), is an addition of a negative integer, its asymptotic time complexity is O (n).

Multiplication (x * y), the product of two n-bit values, has a time complexity of O (n2).

Division (x / y), is a multiplication of an inverted integer, its asymptotic time complexity is O (n2).

Module (A mod N), given an n-bit A, the algorithm’s time complexity is O (n2).

Exponentiation in modules (AB mod N) has a time complexity of O (n3).

Figure 5: Key Generation Overall Time Complexity.

The Extended Euclid’s Algorithm, Using the gcd (a, b) = gcd (b, a mod b) rule, Euclid’s method

computes the gcd of two integers a and b and yields the last value of “a” as gcd when b is zero. To

examine the Extended Euclid’s algorithm, assume a and b of n-bits, and a mod b < a/2 at each iteration.

As a result, the algorithm will only make n recursive calls (since each division decreases one bit of

17

n). In addition, a division of complexity O (n2) is done at every recursive step to extract the new

argument b for the following iteration. When we add up the whole time, we obtain. O (n) · O (n2) =

O (n3)

Multiplicative Inverse, Time complexity is O (n3) due to the usage of the Extended Euclid method.

Primality Test, the N key is n bits long, while the prime integer p is (n/2) bits long. In practice, the

primality test is performed using the probabilistic Miller-Rabin test, Algorithm [5.2]. The most

expensive operation in the Miller-Rabbin technique, given a number p of n bits, is modular

exponentiation, which has an O (n3) complexity. Furthermore, to ensure a high level of confidence,

this test is repeated about ln (p) / 2 [38], resulting in a complexity of O(n). As a result, the final

complexity is O (n3) · O (n) = O (n4)

Table 5: Rsa Overall Time Complexity.

 Normal RSA Enhanced RSA

Prime Generation

Prime Generation P in O(n4) Q in O(n4) P and Q in O(n4)

Key Generation

Modulus N = P · Q O(n2) Karatsuba O(n1.58)

Thotient Φ(n) O(n2) O(n)

e GCD(e, Φ(n)) = 1, O(n3) e is a Fermat’s number O(n2)

d · e ≡ 1 mod Φ(n)) O(n3) O(n3)

Key Gen Figure 5 2 O(n4) + 2 O(n3) + 2 O(n2) O(n4) + O(n3) + O(n2) + O(n1.58) + O(n)

Encryption

C = Me (mod N) O(n3) O(n3/2)

Decryption

M = Cd (mod N) O(n3) 2 · O((n/2)3)

Overall RSA

Overall Time 2O(n4) + 4O(n3) + 2O(n2) O(n4) + 7/4 O(n3) + O(n2)+ O(n1.58) + O(n)

We can examine the overall RSA performance in contrast to the suggested RSA from all of the

above time complexity properties, as presented in Table 5.

Figure 6: Encryption Overall Time Complexity. Figure 7: Decryption Overall Time Complexity.

Figure 8: Standard RSA versus Proposed RSA.

8. Conclusion

This study proved helpful with a combination of the Chinese Remainder Theorem (CRT)
algorithm, Fast exponentiation Algorithm, small exponent, and Linear Congruential Generator (LCG)

18

that has been proposed with the normal RSA algorithm for fast and secure communication for large
data. We applied the proposed theorems, multiplication algorithms, and randomness techniques to
redesign the execution of the RSA cryptosystem that improves speed on the RSA encryption side
while the security of data was maintained and upgraded with the CRT on the decryption side. This
research objective includes a detailed overview of the most successful classical cryptographic
Technique RSA. The study proposed an RSA with the Chinese Remainder Theorem using a small
value of the exponent, which helped enhance the cryptographic algorithm. Another contribution is
the discussion on different multiplication algorithms and their pseudo-codes. Future work will discuss
the practical implementation of the modified RSA algorithm’s security attacks and threats. But unless
we encounter a situation that puts our data in danger, we will continue to use what we have.

Acknowledgements

My heartfelt thanks go to my supervisor, Professor Shen Wei, and all the professors in the School
of Information and Communication for their careful guidance. Their precepts and deeds will benefit
me all my life. During the several years of cooperative research in the Department of Information and
Communication of Zhejiang Sci-Tech University, I am grateful for the enthusiastic guidance and help
of Professor Shen Wei. Thanks to my colleagues, classmates, the director of the School of Information
and Communication, the dean, and the president of our school for directly or indirectly supporting
this research work through scholarship, etc. This project was supported by the Zhejiang Sci-Tech
University, and we would like to thank you for this.

References

[1] T. S. Obaid, Study a public key in rsa algorithm, European Journal of Engineering and Technology Research 5 (4)

(2020) 395–398.

[2] S. A. Jaju, S. S. Chowhan, A modified rsa algorithm to enhance security for digital signature, in: 2015 international

conference and workshop on computing and communication (IEMCON), IEEE, 2015, pp. 1–5.

[3] L. A. Koster, J. E. Meinardi, B. L. Kaptein, E. Van der Linden-Van der Zwaag, R. G. Nelissen, Two-year rsa migration

results of symmetrical and asymmetrical tibial components in total knee arthroplasty: a randomized controlled trial, The

Bone & Joint Journal 103 (5) (2021) 855–863.
[4] R. Imam, Q. M. Areeb, A. Alturki, F. Anwer, Systematic and critical review of rsa based public key cryptographic
schemes: Past and present status, IEEE Access 9 (2021) 155949–155976.
[5] N. Moise, Rsa-public-key-codes, https://github.com/NMoise/RSA-public-key-codes (2023).
[6] S. Chandra, S. Paira, S. S. Alam, G. Sanyal, A comparative survey of symmetric and asymmetric key cryptography,
in: 2014 international conference on electronics, communication and computational engineering (ICECCE), IEEE, 2014,
pp. 83–93.
[7] J. N. Gaithuru, M. Bakhtiari, M. Salleh, A. M. Muteb, A comprehensive literature review of asymmetric key
cryptography algorithms for establishment of the existing gap, in: 2015 9th Malaysian Software Engineering Conference
(MySEC), IEEE, 2015, pp. 236–244.
[8] S. F. Mare, M. Vladutiu, L. Prodan, Secret data communication system using steganography, aes and rsa, in: 2011
IEEE 17th International Symposium for Design and Technology in Electronic Packaging (SIITME), IEEE, 2011, pp. 339–
344.
[9] D. Boneh, H. Shacham, Fast variants of rsa, CryptoBytes 5 (1) (2002) 1–9.
[10] C. A. M. Paixao, D. L. Gazzoni Filho, An efficient variant of the rsa cryptosystem, in: Anais do V Simp ósio Brasileiro
em Seguran ̧ca da Informa ̧c ão e de Sistemas Computacionais, SBC, 2005, pp. 14–27.
[11] S. Gupta, J. Sharma, A hybrid encryption algorithm based on rsa and diffie-hellman, in: 2012 IEEE International
Conference on Computational Intelligence and Computing Research, IEEE, 2012, pp. 1–4.
[12] R. S. Dhakar, A. K. Gupta, P. Sharma, Modified rsa encryption algorithm (mrea), in: 2012 second international
conference on advanced computing & communication technologies, IEEE, 2012, pp. 426–429.
[13] J. M. Ahmed, Z. M. Ali, The enhancement of computation technique by combining rsa and el-gamal cryptosystems,
in: Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, IEEE, 2011, pp. 1–5.
[14] V. S. Mahalle, A. K. Shahade, Enhancing the data security in cloud by implementing hybrid (rsa & aes) encryption
algorithm, in: 2014 International Conference on Power, Automation and Communication (INPAC), IEEE, 2014, pp. 146–
149.
[15] S. Arora, Enhancing cryptographic security using novel approach based on enhanced-rsa and elamal: Analysis and
comparison, International Journal of Computer Applications 975 (2015) 8887.

19

[16] E. Jintcharadze, M. Iavich, Hybrid implementation of twofish, aes, elgamal and rsa cryptosystems, in: 2020 IEEE
East-West Design & Test Symposium (EWDTS), IEEE, 2020, pp. 1–5.
[17] Z. Alamsyah, T. Mantoro, U. Adityawarman, M. A. Ayu, Combination rsa with one time pad for enhanced scheme
of two-factor authentication, in: 2020 6th International Conference on Computing Engineering and Design (ICCED),
IEEE, 2020, pp. 1–5.
[18] C. W. Chiou, Parallel implementation of the rsa public-key cryptosystem, International Journal of Computer
Mathematics 48 (3-4) (1993) 153–155.
[19] M. A. Ayub, Z. A. Onik, S. Smith, Parallelized rsa algorithm: An analysis with performance evaluation using openmp
library in high performance computing environment, in: 2019 22nd International Conference on Computer and
Information Technology (ICCIT), IEEE, 2019, pp. 1–6.
[20] A. Rawat, K. Sehgal, A. Tiwari, A. Sharma, A. Joshi, A novel accelerated implementation of rsa using parallel
processing, Journal of Discrete Mathematical Sciences and Cryptography 22 (2) (2019) 309–322.
[21] C.-H. Wu, J.-H. Hong, C.-W. Wu, Rsa cryptosystem design based on the chinese remainder theorem, in: Proceedings
of the 2001 Asia and South Pacific Design automation conference, 2001, pp. 391–395.
[22] J. Bl ömer, M. Otto, J.-P. Seifert, A new crt-rsa algorithm secure against bellcore attacks, in: Proceedings of the
10th ACM conference on Computer and communications security, 2003, pp. 311–320.
[23] K. Sony, D. Shaik, B. D. Sri, G. Anitha, Improvised asymmetric key encryption algorithm using matlab, IOSR Journal
of Electronics and Communication Engineering 10 (2) (2015) 31–36.
[24] J.-J. Quisquater, C. Couvreur, Fast decipherment algorithm for rsa public-key cryptosystem, Electronics letters 21
(18) (1982) 905–907.
[25] P. Aiswarya, A. Raj, D. John, L. Martin, G. Sreenu, Binary rsa encryption algorithm, in: 2016 International
Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), IEEE, 2016, pp.
178–181.
[26] J. Sahu, V. Singh, V. Sahu, A. Chopra, An enhanced version of rsa to increase the security, Journal of Network
Communications and Emerging Technologies (JNCET) 7 (2017) 1–4.
[27] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems,
Communications of the ACM 21 (2) (1978) 120–126.
[28] M. Rouse, Digital signature network security, Search Security. Tech-Target, 2014.
[29] S. Nisha, M. Farik, Rsa public key cryptography algorithm, A Review. International Journal of Scientific and
Technological Research 6 (2017) 187–191.
[30] T. E. Hull, A. R. Dobell, Random number generators, SIAM review 4 (3) (1962) 230–254.
[31] M. O. Rabin, Probabilistic algorithm for testing primality, Journal of number theory 12 (1) (1980) 128–138.
[32] L. C. C. Garcıa, Can sch önhage multiplication speed up the rsa decryption or encryption? Technische Universit ät
Darmstadt, 2007.
[33] C. Intila, B. Gerardo, R. Medina, A study of public key ‘e’in rsa algorithm, in: IOP Conference Series: Materials
Science and Engineering, Vol. 482, IOP Publishing, 2019, p. 012016.
[34] C. Thirumalai, Review on the memory efficient rsa variants, International Journal of Pharmacy and Technology 8
(4) (2016) 4907–4916.
[35] K. Moriarty, B. Kaliski, J. Jonsson, A. Rusch, Pkcs# 1: Rsa cryptography specifications version 2.2, Tech. rep.
(2016).
[36] U. V. V. S. Dasgupta, C. H. Papadimitriou, Algorithms, McGraw-Hill Education, 2006.
[37] W. Stallings, G. Bressan, A. Barbosa, Criptografia e seguran ̧ca de redes, Pearson Educacion, 2008.

20

