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Abstract: High-resolution magnetic resonance images are of great significance for medical 

diagnosis. A convolutional neural network with multi-resolution learning is proposed for 

magnetic resonance image (MR) superresolution. The network is an improved deep residual 

network, which involves residual units for feature extraction, a deconvolution layer for 

multi-resolution up-sampling, and a multi-resolution learning layer. The proposed network 

performs the super-resolution task in the low-resolution space, which can accelerate the 

network. Multiresolution upsampling is put forward to integrate multiple residual unit 

information and to accelerate the network. Multi-resolution learning can adaptively 

determine the contributions of these upsampled high-dimensional feature maps to high-

resolution MR image reconstruction. Experiment results indicate that the proposed method 

can achieve a good super-resolution reconstruction performance for magnetic resonance 

images, which is superior to the state-of-the-art deep learning methods. 

1. Introduction 

Magnetic Resonance (MR) imaging is a powerful, flexible and non-invasive imaging technique 

that provides high quality cross-sectional images of organs and structures in the body and is widely 

used in medical diagnosis. 

In particular, High-Resolution (HR) provides doctors with clearer images so that they can more 

accurately analyse the body's tissue structure and focal areas and give precise diagnostic advice [1]. 

Therefore, the study of Super Resolution (SR) in MR images has started to receive a lot of attention 

from scholars [2]. 

Due to the powerful self-learning performance of Convolutional NeuralNetwork (CNN), it has 

been widely used in the field of machine vision [3-8], and more and more researchers have introduced 

CNN into MR image super-resolution reconstruction research, mainly using two strategies of pre-

amplification and single upsampling for image super-resolution reconstruction. 

Super-resolution reconstruction in magnetic resonance (MR) imaging is an active area of research. 

Various methods have been proposed to enhance the resolution of low-resolution MR images. In the 

context of MR image super-resolution reconstruction, the pre-amplification strategy is commonly 

employed to improve the performance of convolutional neural networks (CNNs) in generating high-

resolution images.One approach mentioned in reference [9] is the use of bi-trivial interpolation or 
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inverse convolution as pre-amplification techniques. These methods upscale the input low-resolution 

images before feeding them into the CNN for learning. The purpose of pre-amplification is to provide 

the network with more detailed information from the low-resolution images, which can assist in 

generating higher-resolution reconstructions. 

Different studies have applied CNNs to MR image super-resolution reconstruction. Pham et al. [10] 

utilized a super-resolution CNN for brain MR image reconstruction, while Oktav et al. [13-14] proposed 

a residual CNN-based method for cardiac MR image super-resolution. In these approaches, the input 

images were pre-amplified using deconvolution or residual connections before being processed by 

the CNN. It is worth noting that the network architecture used in the latter study bears similarities to 

VDSR [15]. Shi et al. [16] introduced a progressive wide residual network with fixed jump connections 

specifically for reconstructing high-resolution MR images of the brain. Similarly, the input images in 

their method were pre-amplified using bi-trivial interpolation prior to CNN learning. This strategy 

enables the network to operate in the high-resolution image space rather than directly learning from 

low-resolution images. However, it should be acknowledged that this pre-amplification approach may 

not necessarily yield optimal results and can increase computational complexity. 

Overall, these pre-amplification strategies in MR image super-resolution reconstruction aim to 

enhance the network's ability to generate high-resolution images. While they may improve 

performance, it is important to consider the potential trade-offs in terms of computational complexity 

and optimality of the reconstruction results.The super-resolution reconstruction of MR images based 

on the single upsampling strategy does not require pre-amplification, and the image amplification 

operation is implemented at the end of the network structure by deconvolution or Pixel Shuffle, and 

the super-resolution reconstruction is done in the low-resolution image space, which will reduce the 

computational complexity significantly. Tanno et al [19] applied the Efficient Sub-Pixel Convolutional 

Neural Network (ESPCN) [20] to diffusion-weighted magnetic resonance imaging (dMRI) super-

resolution reconstruction by implementing pixel shuffling in the effective sub-pixel convolutional 

layer at the end of the network. Although these methods can speed up the network, the layer-by-layer 

cascading of the network used will result in the loss of information from the current layer not being 

transmitted to the next layer. 

To solve the above problems, an MR super-resolution reconstruction network based on a depth 

residual network [21] is designed and applied to MR image super-resolution reconstruction in this 

paper. The network has multiple jump-connected residual units, which can extract image feature maps 

of different resolutions layer by layer[11]; the feature maps of different resolutions output from 

multiple residual units are fused with Low Resolution (LR) MR images by a deconvolution layer for 

multi-resolution upsampling respectively, in order to avoid information loss during network 

transmission to the maximum extent; finally, the multi-resolution Finally, multi-resolution learning 

is performed on the multi-resolution fused feature maps, and adaptive learning determines the 

contribution of each resolution upsampled fused feature map to the super-resolution reconstruction 

of MR images, and finally realizes the super-resolution reconstruction of MR images. 

2. Multi-resolution learning convolutional neural networks 

2.1 Network Architecture 

The multi-resolution learning convolutional neural network designed in this paper is shown in  

 and consists of three stages: feature extraction, multi-resolution upsampling and multi-resolution 

learning. The network input is a low-resolution MR image and the output is a high-resolution MR 

image, and the whole super-resolution reconstruction process is an end-to-end learning process. 
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Figure 1: The architecture of the proposed network 

In the feature extraction stage, the low-resolution MR image is first passed through the first 

convolutional layer for obtaining coarse feature maps, after which several residual units are cascaded 

layer by layer to achieve coarse to fine feature extraction. To avoid information loss, the coarse feature 

map extracted from the first convolutional layer is superimposed on the output of each residual unit, 

which is used as the output of the residual unit and fed to the next residual unit, and also passed to 

the multi-resolution upsampling deconvolution layer. Each residual unit has two convolutional layers, 

all of which, including the first layer, have 128 convolutional kernels each, with a convolutional 

kernel size of 3×3[12]. 

In the multi-resolution upsampling deconvolution layer, the superimposed feature map output from 

each residual unit is deconvoluted to obtain the upsampled feature map of each residual unit, and then 

fused with the upsampled feature map of the low-resolution MR image respectively to achieve multi-

resolution upsampling. The fused upsampled feature maps are input to the multi-resolution learning 

layer, and the contribution of the fused upsampled feature maps of each resolution to the reconstructed 

high-resolution MR image is determined by adaptive learning, and the final weighted fusion achieves 

super-resolution reconstruction of MR images. 

2.2 Residual units 

For deep networks, cascading multiple convolutional layers will improve feature extraction, but 

will also lead to increasingly difficult network convergence. To improve the speed of network 

optimisation, residual units have been widely used in deep networks [22]. Therefore, the paper also 

uses the residual strategy to construct residual units and cascade multiple residual units to improve 

feature extraction and obtain feature maps with different resolutions. The structure of each residual 

unit is shown in Figure 2, with two convolutional layers, each with 128 convolutional kernels, and a 

convolutional kernel size of 3 × 3. 

 

Figure 2: Residual unit 

Assuming that the input low-resolution MR image is x, 128 coarse feature maps can be obtained 

by the first convolution layer of the network. 

0 conv ( )U f x                                  (1) 

This is then passed on to each residual unit. The output of each residual cell is therefore 

  0 conv conv 1i iU U f f U                              (2) 
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where 1iU  and 
( 1,2, ,N)iU i 

 denote the input and output of the ith residual unit and N 

represents the number of residual units. 

2.3 Multi-resolution upsampling 

The residual units will inevitably encounter information loss in network cascade transmission, and 

the information loss caused by them will accumulate more and more as the network depth increases, 

eventually affecting the subsequent high-resolution reconstruction of detailed information. In order 

to avoid information loss in network cascade transmission and accelerate the network, this paper 

designs a multi-resolution upsampling scheme to achieve the fusion of the output feature map 

information of multiple residual units in order to maximize the retention of detail information. 

In order to retain maximum detail information in the low-resolution image, the upsampled feature 

maps of the low-resolution MR image are fused with the output feature maps of each residual unit 

separately, so the input of the deconvolution layer is N+1 feature maps and the output is N fused 

upsampled feature maps 
ˆ

iy
 

 dec dec
ˆ ( ) , 1,2, ,if f U i N  iy x                         (3) 

where iU
 is the output feature map with the i-th residual unit and 

 dec .f
 is the deconvolution 

operation. 

2.4 Multi-resolution learning 

Obviously, the fused upsampled feature maps output from the deconvolution layer contain 

different resolution image information and inevitably contribute differently to the final high-

resolution MR image. Therefore, a multi-resolution learning strategy is proposed to adaptively learn 

a fused upsampled feature map 
ˆ

iy
 of each resolution weighted to super-resolution reconstruction of 

the MR high-resolution image ŷ , i.e. 

1

ˆ ˆ
N

i i
i

w


  yy                                    (4) 

where iw
 denotes the contribution of the fused upsampled feature map 

ˆ
iy
 Clearly, the total loss 

L of the whole network is composed of the loss iL
 of each residual unit and the loss sumL

 of the 

multi-resolution learning layer, i.e.  

sum
1

N

i
i

L L L


                                     (5) 

2

2
ˆ

1
i iL  y y

                                  (6) 

2

sum

1

2
L  y y‖ ‖                                 (7) 

where y represents the real high-resolution image. Stochastic gradient descent is used to optimise 

the network, and gradient cropping is employed to improve convergence performance and suppress 
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gradient explosion. 

3. Experimental results and discussion 

3.1 Dataset and pre-processing 

The experimental data in this paper were selected from the Brain-Tumor-Progression subset of the 

Cancer Medicine Image Public Dataset (https://wiki.canerimagingarchive.net/display/Public/Brain-

Tumor-Progression), and a randomly selected A total of 548 images from 24 MR image sequences 

were used to build the training set, and 646 images from 28 MR image sequences were randomly 

selected for testing. All MR images in the sub-dataset were used as the true HR images, and the LR 

images after double triple interpolation were used as the true LR images. 

For the training set, the real LR image is cropped into multiple m × m sized LR image blocks. Due 

to the intrinsic properties of deconvolution [18], the corresponding real HR image is cropped into 

multiple [(m-1)×n+1] × [(m-1)×n+1] sized HR image blocks (n is the magnification). In this paper, 

super-resolution reconstructions with magnifications of 2, 3 and 4 are discussed. Thus, for ×2, ×3 and 

×4, the LR/HR image block sizes in the training set are 142/272, 102/282,82/292 pixels respectively; 

the cropped LR images are in steps of 11, 7 and 6 pixels respectively; thus, approximately 175 000 

training samples are ultimately available. 

Image super-resolution is usually evaluated using Peak Signal-To-Noise Ratio (PSNR) and 

Structural Similarity Index (SSIM) [23]. The higher the PSNR and SSIM values, the better the image 

reconstruction effect. 

3.2 Network parameters configuration and hardware implementation 

The weights were initialised using the method from the literature [24], with weight decay set to 

0.000 1, momentum to 0.9, minimum batch size to 128 and epoch to 100. The initial learning rate 

was set to 0.1 and decayed by a factor of 10 after every 20 epochs. All deep learning models were 

trained and tested using the PyTorch package. All network models were trained on a computer with 

Intel®Core™ i5-9600KCPU@3.40 GHz x 6 and an NvidiaGTX2080Ti GPU, unless otherwise stated. 

All test tasks were implemented on a computer with an Intel Xeon E5-2360 v3 CPU2.40 GHz×16 

and no GPU. 

3.3 Discussion of multi-resolution upsampling 

The effect of a multi-resolution upsampling strategy on the effect of network reconstruction is 

discussed here by fixing the number of residual units in the network to nine. In addition to the single 

upsampling strategy in the literature [18], an additional dual upsampling strategy is defined in this 

paper to illustrate that the fusion of low-resolution MR image information is also useful for super-

resolution reconstruction. The so-called double upsampling is based on the literature [18], where the 

low-resolution MR images are upsampled and then superimposed on the single-sampling network 

output to achieve super-resolution reconstruction of the fused high-resolution MR images. Again, 

here the magnification is only considered for the case of 2. 

The single-sampling strategy network model only captures high-dimensional features by 

cascading residual units to achieve coarse-to-fine feature extraction, so some detailed information in 

the low-resolution MR images may be lost layer by layer during the cascade transfer process, 

affecting the final high-resolution MR image reconstruction. As shown in Table 1, the single 

upsampling strategy network model did obtain the worst super-resolution reconstruction. Because the 

dual upsampling strategy network model incorporates the initial low-resolution MR image 
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information, it obtains higher PSNR and SSIM values than the single-sampling strategy network 

model. In contrast, the multi-resolution upsampling strategy network in this paper passes the feature 

maps output from all residual units to the multi-resolution upsampling layer, and separately fuses the 

initial low-resolution MR image information, thus obtaining the best super-resolution reconstruction 

results for high-resolution MR images. 

Table 1: MR Image SR performance of the proposed network models with different upsampling 

strategies (Scale factor=2). 

Evaluation indicators 

Up-sampling strategy 

Single 

upsampling 

Double 

upsampling 

Multi-resolution 

upsampling 

PSNR 45.33 45.56 45.67 

SSIM 0.9899 0.9943 0.9945 

3.4 Comparison of reconstruction performance with other super-resolution methods 

After the above discussion, the residual units in the proposed network model were fixed by nine 

and compared with some of the latest MR image super-resolution deep learning networks (SRCNN 
[10], de-CNN [13- 14], FSCWN [16] FSRCNN [17] and ESPCN [19]). As shown in Table 2, the deep learning 

methods all obtained far better image super-resolution results than the bicubic interpolation methods. 

Table 2: MR Image SR performance of various image SR methods 

Evaluation 

indicators 

MR image super-resolution reconstruction methods 

Scale Bicubic SRCNN ESPCN FSRCNN de-CNN FSCWN Ours 

PSNR 

×2 40.55 44.96 44.39 43.46 44.26 44.03 46.56 

×3 35.12 36.73 36.27 37.52 36.34 - 38.75 

×4 32.31 33.92 33.53 34.25 32.60 - 35.39 

SSIM 

×2 0.987 1 0.977 5 0.965 9 0.990 8 
0.9911 

0.9911 
 0.9987 

×3 0.941 4 0.961 0 0.954 5 0.965 7 0.9641 - 0.9696 

×4 0.921 6 0.932 0 0.933 8 0.932 0 0.9344 - 0.9389 

The SRCNN uses a pre-amplification strategy before network learning that may introduce some 

artifacts and lose some prior information, and the network has only three convolutional layers, so the 

SRCNN has the worst super-resolution reconstruction performance among all the deep learning 

methods. reconstruction, which can learn the non-linear mapping relationship between LR images to 

HR images directly from LR images, and thus obtain better reconstruction results than SRCNN, 

although their network depths are not much different from SRCNN. Although de-CNN and FSCWN 

use a pre-amplification strategy, they use residual learning to cascade the network reasonably deeply 

and their network depth is much greater than the first three network models, thus these two factors 

lead to higher PSNR and SSIM values obtained by de-CNN and FSCWN than ESPCN and FSRCNN. 

It should be noted that the network can only directly achieve 2X super-resolution reconstruction due 

to the fact that FSCWN uses 2×2 pooling to reduce the computational effort in the pooling layer to 

reduce the image. In contrast, the network in this paper uses multiple residual units to capture the 

high-dimensional feature maps of the low-resolution MR images at different resolutions, and uses 

multi-resolution upsampling to achieve the fusion of the high-dimensional feature maps and the low-

dimensional feature maps (obtained from the low-resolution MR images), avoiding the loss of 

information in the cascade transfer of image details in the residual units, while the multi-resolution 
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learning strategy adaptively balances the impact of each resolution feature map on the reconstruction 

of high-resolution MR images. As a result, the network in this paper obtains the optimal super-

resolution reconstruction of high-resolution MR images. A comparison of 2 visual examples of super-

resolution reconstructions (magnification 2) is given in Figure 3, and the results are consistent with 

the objective data comparison shown in Table 2. 

(b) Ours(a) GT (c) SRCNN (d) ESPCN

(e) FSRCNN (f) de-CNN (g) FSCWN (h) Bicubic
 

Figure 3: Results of the reconstructed No.1 MR images with different algorithms 

While training time is an important issue for deep learning, testing time, especially in the CPU, is 

even more critical for practical applications. As shown in Table 3, the pre-amplification strategy 
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performs super-resolution reconstruction in HR image space, while the single upsampling strategy 

performs super-resolution reconstruction in LR image space, so the former networks (SRCNN, de-

CNN and FSCWN) take more time than the latter networks (FSRCNN and ESPCN) when the 

difference in depth between the two networks is not particularly large. For example, the SRCNN, 

which has only 3 layers of 9-1-5 convolution, takes less time to reconstruct. The network in this paper 

is also a multi-resolution upsampling strategy, which also performs super-resolution reconstruction 

in LR image space, and therefore takes less time than the pre-amplification strategy networks de-

CNN and FSCWN with about the same network depth. However, compared to the two single 

upsampling networks FSRCNN (7 convolutional layers and 1 deconvolutional layer with no more 

than 56 convolutional kernels) and ESPCN (3 convolutional layers and 1 pixel shuffle layer with no 

more than 64 convolutional kernels in each convolutional layer), the network in this paper has more 

layers (19 convolutional layers and 1 deconvolutional layer) and more convolutional kernels (128 

convolutional kernels in each convolutional layer) Therefore, the network in this paper will take 

slightly more time to reconstruct. 

Table 3: Running time for testing via different methods 

Magnification  
MR super-resolution reconstruction methods 

SRCNN FSRCNN ESPCN de-CNN FSCWN Ours 

x2 0.23 0.13 0.05 1.16 1.29 1.02 

x3 0.21 0.08 0.04 1.14 - 0.47 

x4 0.24 0.07 0.03 1.13 - 0.32 

4. Summary and outlook 

MR image super-resolution is of great research and display significance for aiding medical 

diagnosis. In this paper, a multi-resolution learning convolutional neural network based MR image 

super-resolution method is proposed. The input of the network is a low-resolution MR image, and the 

information is passed through multiple residual units in LR image space, and the output of high-

resolution MR image reconstruction is directly achieved by fully capturing image details at different 

resolutions through multi-resolution upsampling and multi-resolution learning. Experimental results 

show that for different magnifications (×2, ×3 and ×4), the network in this paper can improve the 

PSNR/SSIM values to 45.46 / 0.991 4, 37.65 / 0.968 9 and 34.09 / 0.939 7 respectively with less CPU 

test time consumption, and the super-resolution reconstruction is better than some of the latest deep 

learning methods for MR images. Since Markov random fields can find correlations between HR/LR 

images, the introduction of Markov random fields can be considered to reduce the number of 

convolutional kernels to further accelerate the network proposed in this paper. 
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