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Abstract: In the context of high-speed mixed traffic and intricate multi-vehicle interaction, 

existing driving intention recognition models for research vehicles inadequately address 

crucial factors, such as driving style and vehicle-vehicle interaction information. This paper 

introduces a novel driving intention recognition model based on an enhanced bidirectional 

long- and short-term memory network (Bi LSTM). The proposed model leverages the driving 

trajectory sequence of the target vehicle, driving style, and interaction features of surrounding 

vehicles as inputs for effective training and learning. It facilitates the classification and 

recognition of the driving intention feature dataset, specifically considering diverse driving 

styles. Additionally, the whale optimization algorithm is employed to optimize pivotal 

hyperparameters, encompassing the number of hidden layer nodes and learning rate, 

effectively mitigating the adverse impacts of manual parameter adjustment. The model's 

efficacy is validated using the NGSIM dataset, exhibiting an impressive recognition accuracy 

of 97.5% in precisely identifying vehicle driving intentions. 
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Figure 1: Analysis of Vehicle Interaction Behavior in High-speed Mixed Traffic Environment 
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Vehicle interaction in a high-speed mixed traffic environment is a complex behavior, and 

autonomous driving can share each other's driving intentions in real time and understand the current 

driving environment through vehicle networking technology. However, artificial driving cars cannot 

exchange information with the vehicle network, and the subjective driving intentions of artificial 

drivers (going straight, changing lanes left, changing lanes right, etc.) are unknown, and automatic 

driving cars can only infer their intentions through their external behavioral characteristics as shown 

in Figure 1. Driving intent recognition of surrounding vehicles can both predict the driving trajectory 

of surrounding vehicles and provide decision-making reference information for self-driving cars. 

Accurate driving intent recognition helps to improve the driving safety of vehicles, and how to 

accurately recognize the driving intent of surrounding vehicles is also one of the current hot spots in 

the research of automatic driving systems. 

At present, the research methods of driving intention recognition at home and abroad can be 

divided into two categories: driving intention recognition methods based on traditional machine 

learning and driving intention recognition methods based on deep learning, both of which have their 

own advantages and disadvantages. Among the traditional machine learning methods based on 

traditional machine learning, support vector machine model (SVM) and markov model are more 

widely used [1]. Zhu Liling et al. [2] proposed an SVM-based driving intention classification model, 

which is able to classify three types of driving intentions: vehicle following, lane change preparation, 

and lane change execution, but the information may be lost when using principal component analysis 

to process high-dimensional driving data, and it is also difficult for SVMs to solve the problem of 

multi-classification. Liu et al. [3] proposed a new model combining markov model and SVM to obtain 

better recognition accuracy and real-time performance than a single model for lane changing, lane 

keeping, and overtaking on highways, and the improvement lies in the use of a two-layer algorithm 

to fully utilize the performance advantages of both classifiers. Among the deep learning-based 

methods, neural network model and long short-term memory network model (LSTM) are more 

widely used [4]. Huang et al. [5] applied deep neural network (DNN) to lane changing behavior 

recognition, which can effectively fit the complex features of lane changing behaviors, but the DNN 

network has a weak ability to capture the temporal features, so the model has received less attention 

in recent years. Phillips et al. [6] used LSTM to build an intention recognition model on the collected 

intersection traffic data to realize the prediction of left-turn, right-turn, and straight ahead intentions, 

and verified the ability of LSTM to capture the features of real collected time-sequence data. Huifei 

et al [7] used bidirectional long- and short-term memory network (Bi LSTM) to identify abnormal 

states in driving behavior, and their innovation lies in combining Bi LSTM with fully connected 

neural networks, giving full play to the advantages of both. 

In terms of the research process and the corresponding indicators, deep learning models perform 

better than traditional machine learning models in general. The deep learning model represented by 

the long and short-term memory neural network model, with its strong fitting ability and ability to 

capture time series features, makes its performance in driving intention recognition overall stronger 

than that of the traditional machine learning model. However, some studies still have difficulties that 

need to be solved, such as insufficient consideration of surrounding vehicle interaction features, 

neglecting driving styles, and difficulties in manual parameterization. 

2. Improved model 

2.1. Bidirectional long and short-term memory neural network 

Long short-term memory neural network is a class of variants of recurrent neural network (RNN), 

compared with RNN it controls the flow of information by introducing the "gate" structure and the 

concept of cells, thus overcoming the gradient explosion and gradient disappearance that plague RNN. 
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The most basic cell structure of the network is shown in Figure 2, which differs from RNN in that 

there are three special "gate" structures, Forget Gate, Input Gate and Output Gate, as well as a cell 

that is used for storing and transmitting information about the state of the previous moments. The 

basic unit realizes the flow of information mainly through these special structures [8]. 

          

Figure 2: LSTM Basic Cell Structure            Figure 3: Bi LSTM Structure Flow Chart 

Although LSTM solves the problems existing in RNN, it can only utilize the past feature 

information by itself and ignore the future information, so Bi-directional Long Short Term Memory 

Neural Network was born on this basis [9]. The model contains two independent LSTM networks, 

and the inputs of the model are fed into the two LSTM networks in the form of forward and reverse 

respectively, and then the feature vectors extracted from the two networks are spliced to obtain the 

final feature vector of the model; after the forward and reverse feature extraction, the final spliced 

vector possesses the information of the past and the future at the same time, and its structural flow is 

shown in Figure 3, with the 1h  to th  as forward operation process, th  to 1h  is the reverse operation 

process. 

2.2. Driving Intent Recognition Model 
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Figure 4: Bi LSTM Driving Intention Recognition Model 

In this paper, the architecture of driving intention recognition model is built based on bi-directional 
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long- and short-term memory network as shown in Figure 4. 

The solid line in the above figure represents the process of forward LSTM information propagation 

and the dashed line represents the process of reverse LSTM information propagation. The time 

sequence 1 2 3( , , ... )t tX x x x x  is input to the forward and reverse LSTM networks respectively, and the 

input tx  at each moment t in the sequence obtains the forward output th  and the reverse output th  in 

this model, which is then spliced to obtain the vector [ , ]t t tx h h  . After obtaining xt' it is input to the 

fully connected layer to obtain the output t ty wx b  , where w,b are the weights and bias of the 

fully connected layer. After obtaining yt it is input to the SoftMax layer to obtain the probability of 

each of the three input categories left lane change, right lane change, and straight ahead through the 

activation function at moment t. The category with the highest probability is then used as the driving 

intention at the current moment using the classification layer. 

2.3. Bi LSTM hyperparameter optimization process and results 

The hyperparameters of Bi LSTM network have a large impact on the performance of the model, 

and the correct selection of the two important hyperparameter indicators, namely the number of nodes 

in the hidden layer and the learning rate, can improve both the training speed and the model accuracy. 

Therefore, in order to obtain the optimal solution of these two hyperparameters, this paper uses the 

Whale Optimization Algorithm (WOA) to find the optimization of the loss function of Bi LSTM, and 

when the iterative curve of the algorithm converges and the loss function is the lowest the 

corresponding hyperparameter is the optimal solution. The algorithm flow of WOA-Bi LSTM is 

shown in Figure 5. 
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Figure 5: WOA-Bi LSTM Algorithm Flow 
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The whale optimization algorithm updates the optimization parameters by simulating the hunting 

behaviour of the whale community, which includes three parts: encircling the prey, attacking the prey 

and randomly searching for the prey [10]. The position of each whale represents a feasible solution, 

and for N parameters to be optimized, the position of the whale can be set as 1 2 3( , , ... )NX x x x x . 

Optimization of the loss function of the Bi LSTM network was performed using the WOA model. 

The number of iterations of the optimization algorithm is set to 50, the optimizer uses Adam, the loss 

function is cross-entropy, the number of whale populations in the WOA-Bi LSTM model is set to 30, 

and the number of iterations is set to 20, and the input of the Bi LSTM network is the driving intention 

dataset constructed by the characteristic equation of the motion state of the target vehicle. According 

to the output results of the iterative convergence of the WOA model, the whale position vector 

corresponding to the fitness value at the convergence of the fitness curve is the optimal solution, the 

corresponding optimal number of hidden layer nodes is 82, and the optimal learning rate is 0.0016. 

3. Simulation Analysis of Driving Intent Recognition Model 

3.1. Data pre-processing based on improved sliding window algorithm 

Multiple traffic participants usually exist in the interaction scenario, and the self-driving car will 

be affected by the interactions between the surrounding vehicles, and the selection of interaction 

features is crucial for the accurate recognition of the intent of the artificial driving vehicle. 

Considering the importance of lateral distance to vehicle driving safety [11], lateral distance is 

introduced into the driving intention recognition task as one of the interaction features, l is the lateral 

relative distance between the target vehicle and the self-driving car, d is the longitudinal relative 

distance, and the peri-vehicle interaction feature can be expressed as equation (1). 
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The interaction features describe the interaction behaviour of the target vehicle with the 

surrounding vehicles including the self-vehicle, identifying the driving intention also requires 

selecting the motion state features of the target vehicle: ( , , , , , )t x xf v a x y v a , where v is the velocity 

of the target vehicle; a is the acceleration of the target vehicle; x, y denote the longitudinal and 

transverse coordinates of the target vehicle; xv  is the transverse velocity; xa  is the transverse 

acceleration. 

The driving intentions generated by different styles of drivers facing the same driving scenario are 

also different, so accurately recognizing the driving intentions of the target vehicle also requires the 

introduction of its driving style features, and the driving style feature vector is shown in (2). 
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                                                 (2) 

In summary, the input of the driving intention recognition model consists of three parts: interaction 

features, driving style type, and target vehicle motion state as shown in equation (3). 

( , , )v t social stylei f f v                                                    (3) 

After completing the selection of feature parameters, it is necessary to screen the NGSIM data and 

extract the corresponding feature data, and at the same time, the classification model is a supervised 
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learning model, which needs to label the driving intention data with vehicle behaviour [12]. In this 

paper, a sliding window algorithm combined with lateral displacement is proposed to extract and 

assign labels to the corresponding data, as shown in Figure 6. 
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Figure 6: Improved Sliding Window Data Extraction Algorithm 

As shown in the figure, the improved data extraction method is defined as follows: find the moment 

t corresponding to the vehicle lane-changing point St, then extract the sampling points corresponding 

to the time periods t-4s and t+4s in the sequence of vehicle trajectories and calculate the difference 

between the two lateral displacements. If the difference is greater than the lane width of 3.75m, the 

trajectory is labelled as a successful lane change. If the difference is less than 3.75m, take the moment 

where the lane changing point is located as the centre, take two sampling points S1 and S2 

symmetrically at the two ends, and calculate the difference of the lateral displacement of the two; 

when the difference reaches 3.75m, the moment t1 corresponding to S1 is defined as the starting point 

of the lane changing, and the moment t2 corresponding to S2 is the ending point of the lane changing, 

and the sampling points falling into the interval [t1, t2] are all the process points of the lane changing. 

With the above method, the NGSIM data are calibrated for lane changing behaviour, and the data 

are processed according to the driving intention recognition model in the previous section, and the 

trajectory sequences are extracted as the input data of the model during the experiments, and a total 

of 23,800 sets of sample data are finally acquired, of which 4,977 sets of left lane-changing labels, 

6,331 sets of right lane-changing labels and 12,492 sets of straight-line labels are obtained, and the 

data sets are divided into training sets, validation sets and test sets according to the 7:1.5 :1.5 ratio to 

divide the data set into training set, validation set and test set. 

3.2. Simulation results analysis 

Bi LSTM networks with different hyperparameters are chosen as experimental comparisons, the 

number of iterations of the networks are all set to 50, the loss function is the cross-entropy loss 

function, and numerical designators are added behind the names of the same networks for ease of 

differentiation, and the decreasing curves of the loss functions of each model and the increasing 

curves of the accuracy rates during training are shown in Figure 7. 

From the above figure, WOA-Bi LSTM has the lowest loss function, the fastest convergence and 

the best performance among the models. The training elapsed time for each model on the training set 

and the accuracy of the last iteration are shown in Table 1. 

In conclusion, choosing a reasonable number of hidden layer nodes and initial learning rate has a 

great impact on the performance of the model. The optimised Bi LSTM is used to recognise the test 

set data and the results are shown in Figure 8. From the figure, it can be seen that the recognition 

accuracy of the model on the test set is very high, reaching 97.5%, the recognition accuracy of the 
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model on the right lane data is higher than that of the left lane, because the training data of the left 

lane is less than that of the right lane, and the model learns more about the understanding of the 

features of the right lane than that of the left lane during the training process, but both have a high 

recognition accuracy, and the recognition accuracy of the left lane is 95.5 per cent. The recognition 

accuracy of the left lane is 95.3% and the recognition accuracy of the right lane change is 97.3%. The 

recognition accuracy of 95.3% for the left lane change and 97.2% for the right lane change indicates 

that the model can recognise the left and right lane changes. 
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Table 1: Performance of different hyperparameter network training sets 

Model Node number Learning rate Accuracy rate 

WOA-Bi LSTM 82 0.0016 96.6% 

Bi LSTM1 41 0.0016 95.2% 

Bi LSTM2 164 0.0016 96.1% 

Bi LSTM3 82 0.0001 90.7% 

Bi LSTM4 82 0.01 95.1% 
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Figure 8: Test Set Confusion Matrix 

26



4. Conclusions 

This study addresses the critical task of driving intention recognition for vehicles navigating high-

speed mixed traffic environments. A novel methodology is proposed, which integrates lateral 

displacement difference and sliding window techniques to enhance the processing of the NGSIM 

dataset, thereby facilitating the extraction and construction of a comprehensive driving intention 

feature dataset. Building upon this foundation, an improved driving intention recognition model is 

presented, leveraging the power of Bi LSTM. The model's performance is further optimized through 

meticulous hyperparameter tuning, specifically adjusting the learning rate and the number of hidden 

layer nodes, utilizing the whale optimization algorithm. The experimental results unequivocally 

demonstrate that the optimized hyperparameters acquired via the whale optimization algorithm 

significantly enhance the recognition accuracy of the model. On the NGSIM dataset's test set, the 

model achieves remarkable overall recognition accuracy of 97.5%, with precise accuracies of 95.3% 

for left lane changes, 97.2% for right lane changes, and 98.3% for straight-ahead driving. Notably, 

the recognition process is accomplished within an impressively low time span of 1.35 seconds. These 

findings unequivocally highlight the model's real-time capability to accurately discern driving 

intentions, thereby yielding valuable insights for predicting the driving trajectories of surrounding 

vehicles. 
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