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Abstract: The technology of handwritten digit recognition has been widely applied in 

various situations and has significant practical significance. However, the morphological 

features of handwritten numbers are very complex, and achieving accurate recognition of 

handwritten numbers relies on efficient and accurate recognition techniques. This article 

proposes a residual convolutional network model to address the issues of inaccurate 

feature extraction and weak model generalization ability in convolutional neural networks. 

By introducing residual blocks into the network, the problem of vanishing and exploding 

network gradients is effectively eliminated. At the same time, the Batch Normalization 

and Dropout layers are introduced to accelerate the network training process and reduce 

the risk of overfitting. Finally, the k-fold cross validation method was used to select the 

optimal parameter configuration of the model. The experimental results show that residual 

convolutional neural networks have the characteristics of high recognition accuracy and 

strong model generalization ability.  

1. Introduction 

Handwritten digit identification, categorization, and processing technology will replace manual 

extraction of digital information in a variety of industries, considerably enhancing productivity as it 

serves as the core and key of digital automation systems. Research on handwritten digit recognition, 

however, has the potential to evaluate and validate certain fresh hypotheses that have great theoretical 

relevance for challenges like Chinese and English character recognition. For the recognition of 

handwritten numerals, several academics have developed many recognition algorithms, including the 

BP neural network, the self-coding network, the convolutional neural network, etc. There are still 

some issues that affect recognition performance and result in low accuracy, such as the uncertainty 

of picture noise interference, despite the gradual increase in recognition rate and improvement in 

model performance; number recognition differs from text recognition in that it lacks context and 

can only be performed on the character itself, without the aid of any other recognition techniques; 

unable to strike a balance between speed and accuracy[1-3]. 

Zhou proposed to extract the curvature features of character contours. This method uses a 

"17/8/2" Back Propagation (BP) neural network for recognition. Due to the similar curvature of 

some numbers (such as "0" and "8", "2" and "4", etc.), the recognition rate is not too high (less than 
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95%) [4]. To solve the problems of long training time and local optimization in BP neural networks, 

scholars such as Wei Henghua proposed an improved genetic algorithm and used it to optimize the 

weights and thresholds of artificial neural networks. Based on this algorithm, a "256/16/10" BP 

neural network was constructed and effectively trained on the USPS handwritten digit sample set 

[5]. Liu Yang and other researchers used variable step method and Newton method to improve the 

BP algorithm, which improved the convergence speed of the network. The network convergence 

speed of this method is significantly faster than other improved algorithms. On this basis, the BP 

neural network recognition model will be applied to the digital recognition system. Although this 

method improves the algorithm speed, it requires more memory storage space, and the recognition 

rate of handwritten digits has not yet reached a very high level [6]. Yang et al proposed an online 

incremental learning algorithm based on support vector machines. This method calls the LIBSVM 

classifier training function and sample recognition function, and retrains the classifier with 

unrecognized samples as incremental data. The experimental results show that incremental training 

can improve sample training speed and improve the accuracy of handwritten digit recognition while 

taking into account the appearance of new input samples [7]. Convolutional neural networks-based 

handwritten digit recognition was proposed by Li Sifan and Gao Faqin. A better convolutional 

neural network model is created, and the MNIST character library is used to test the new model. 

The outcomes demonstrate the simplicity of the enhanced network topology, the reduced 

preprocessing workload, the great scalability, the quick recognition speed, and the high recognition 

rate. The recognition performance is noticeably better than the old methods, and it can successfully 

prevent the network from overfitting [8]. In summary, for the purpose of recognizing handwritten 

digits, it is frequently challenging for a single recognition model to accomplish both speed and high 

accuracy, whether utilizing BP neural networks or the support vector machine SVM algorithm. 

Traditional approaches still rely on hand-extracting sample features, and statistical features-based 

identification algorithms struggle to identify characters in an image when their shapes are similar. 

As a result, feature extraction is a primary area for improvement. Traditional artificial neural 

networks' design and implementation frequently rely too heavily on experience and generalization 

performance, making it difficult to guarantee the output would be optimal when used for actual 

handwritten digit recognition [9]. As a result, strengthening generalization capability and refining 

the network model are also important areas of advancement. 

2. Residual neural network 

2.1 Deep residual learning  

Deep convolutional networks have made breakthrough progress in image classification tasks. In 

recent years, research has shown that the depth of neural networks has a crucial impact on 

classification performance. The network models that have achieved good results on the ImageNet 

dataset are all based on deep neural network models. As the depth of the network increases, a 

subsequent problem is gradient dispersion. The use of normalization initialization solves this problem 

to some extent and can make the number of stacked layers reach tens of layers [10].  

As shown in Figure 1, set the input to x. Assume that the ideal map is f(x), which is the input to the 

activation function above Figure 1. The portion in the dashed box only needs to fit the residual 

mapping f(x) - x related to the identity mapping. Residual mapping is often easier to optimize in 

practice. Using identity mapping as the ideal mapping f(x). Simply set the weight and deviation 

parameters of the weighted operations (such as affine) above the dashed box in Figure 1 to 0, and then 

f(x) is an identity map. In practice, when the ideal mapping f(x) is very close to the identity mapping, 

the residual mapping is also easy to capture the subtle fluctuations of the identity mapping. Figure 1 is 

also the basic block of ResNet, which is the residual block. In residual blocks, input can propagate 
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faster forward through cross layer data lines. This short connection form neither introduces new 

parameters nor increases computational complexity [11].  

 

Figure 1: The structure of residual block 

2.2 Batch normalization layer 

Generally speaking, the batch normalization layer is effective enough for data standardization 

preprocessing in shallow models. As the model training progresses, it is difficult for the output near 

the output layer to undergo significant changes when the parameters in each layer are updated. 

However, for deep neural networks, even if the input data has been standardized, updating the model 

parameters during training is still more likely to cause drastic changes in output near the output layer. 

The instability of numerical calculations often makes it difficult for us to train effective depth models. 

The proposal of batch normalization layer is precisely to address the challenge of deep model training. 

During model training, the batch normalization layer utilizes the mean and standard deviation on 

small batches to continuously adjust the intermediate output of the neural network, thereby making 

the values of the entire neural network output in the middle of each layer more stable [12]. 

(1) Batch normalization of fully connected layers 

Usually, we place the batch normalization layer between the affine transformation and the 

activation function in the full connection layer. Let the input of the full connection layer be u , the 

weight parameter and deviation parameter be W  and b , respectively, and the activation function be 
 . Set the operator for batch normalization to BN . Then, the output of the full connection layer using 

batch normalization is (BN( )) x , where the batch normalization input x  is obtained by affine 

transformation:  

x = Wu+ b .                                         (1) 

At the same time, consider a small batch consisting of m  samples, and the output of affine 

transformation is a new small batch 
(1) ( )m, ,B= { }x x . They are the inputs of the batch normalization 

layer. For any sample 
( ) ,1i d i m  x  in small batch B , the output of the batch normalization layer 

is also a d -dimensional vector: 

( ) ( )BN( )i iy x ,                                        (2) 

and obtain it from the following steps. Firstly, calculate the mean and variance for small batch B : 
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here is a very small constant 0  , ensuring that the denominator is not greater than 0. On the 

basis of the above standardization, the batch normalization layer introduces two learnable model 

parameters, the scale parameter γ  and the shift parameter β . These two parameters have the same 

shape as 
( )i

x  and are both d -dimensional vectors. They are calculated by element multiplication 

(symbol ) and addition with 
( )ˆ ix , respectively: 

( ) ( )ˆi i y γ x β .                                      (6) 

we have obtained the batch normalized output 
( )i

y  of 
( )i

x . Note that the learnable stretching and 

offset parameters reserve the possibility of not normalizing 
( )i

x  in batches: at this point, only 
2 Bγ = σ

 and Bβ = μ  need to be learned. If batch normalization is not beneficial, theoretically, the 

learned model can be avoided using batch normalization [13]. 

(2) Batch normalization of convolutional layers 

For convolution layer, batch normalization occurs after convolution calculation and before 

activation function is applied. If the convolution calculation outputs multiple channels, we need to 

perform batch normalization on the outputs of these channels separately, and each channel has 

independent stretching and offset parameters, all of which are scalars. Set m samples in a small batch. 

On a single channel, assume that the height and width of the convolution calculation output are p and 

q, respectively. We need to perform batch normalization on m×p×q elements in this channel 

simultaneously. When performing standardized calculations on these elements, we use the same 

mean and variance, that is, the mean and variance of the m×p×q elements in the channel. 

2.3 Residual neural network 

ResNet follows the design of VGG's full 3×3 convolutional layers. As shown in Figure 2, there are 

first two 3×3 convolutional layers with the same number of output channels in the residual block. 

Each convolution layer is followed by a batch normalization layer and ReLU activation function. 

Then we will skip the two convolution operations and directly add the input to the last ReLU 

activation function. The implementation of residual blocks is as follows. It can set the number of 

output channels, whether to use an additional 1×1 convolutional layers to modify the number of 

channels, and the stride of the convolutional layers. ResNet follows the 7×7 convolutional layer with 

64 output channels and a step of 2 with a maximum pooling layer of 33 with a step of 2. ResNet adds 

a batch normalization layer after each convolutional layer. ResNet uses four modules composed of 

residual blocks, each module using several residual blocks with the same number of output channels. 

Each subsequent module doubles the number of channels from the previous module in the first 

residual block and halves the height and width [14].  
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Figure 2: ResNet 

3. Experimental Results and Discussion 

3.1 Experimental Data and Environment 

The MNIST handwritten digit dataset is from the National Institute of Standards and Technology 

in the United States. It consists of two types: a training set and a testing set, written and produced by 

a total of 250 high school students and Census Bureau staff, with students and staff accounting for 

50% each. The training set contains 60000 training samples, and the test set contains 10000 test 

samples. The dataset is divided into four parts: training image set, training label set, testing image set, 

and testing label set. Each MNIST image is a digitized image of a single handwritten 0-9 numeric 

character. Each image is 28×28 pixel size. A pixel value of 0 represents white, a pixel value of 255 

represents black, and the middle pixel value represents grayscale. Part of the training set samples are 

shown in Figure 3. 

 

Figure 3: Partial samples from the MNIST dataset 

Due to the fact that the validation dataset does not participate in model training, it is too luxurious 

to reserve a large amount of validation data when the training data is insufficient. One improvement 

method is k-fold cross validation. In k-fold cross validation, we divide the original training dataset 

into k non-overlapping sub-datasets, and then we perform k-fold model training and validation. Each 

time, a sub dataset is used to validate the model and train the model using other k-1 sub-datasets. In 

this k training and validation sessions, the sub-datasets used to validate the model were different 

each time. Finally, we averaged training error and validation error for these k times. We used the 

deep residual convolutional neural network shown in Figure 4 for this experiment. 

 

Figure 4: The network model used in the experiment 

54



3.2 Handwritten Digit Prediction Experiment 

First, initialize all weight parameters using the Xavier method, set the initial values of all 

deviation parameters to 0, train 60000 training samples in the MNIST dataset, and adjust model 

parameters through back-propagation. Afterwards, transfer the training set to the trained model and 

observe the classification results. In the RCN model used in this article, when epoch=10, the gradient 

descent small batch size is 64, the learning rate is 0.01, and the momentum method parameter is 

chosen as 0.5. As follow, the results of the prediction experiment are shown Table 1 and Figure 5. 

Table 1: Predicting experimental results data 

Epoch Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

1 4.691547 91 14.577732 97 

2 3.490832 97 9.012899 98 

3 2.229128 98 8.367525 98 

4 1.599396 98 6.592390 98 

5 1.061613 98 6.336032 98 

6 1.355022 98 5.778624 98 

7 0.995296 98 5.065052 98 

8 0.968919 99 4.839839 98 

9 0.640158 99 5.119769 99 

10 1.054762 99 5.028024 98 

 

Figure 5: Predicting experimental results 

According to the chart data, the training error gradually decreases with the iteration cycle, with a 

slight rebound in the sixth cycle and then continuing to decrease. The generalization error decreased 

significantly in the first three iteration cycles, and then continued to decline gently to about 5. The 

training recognition rate rapidly increased from 91% to over 97% in the first three iteration cycles, 

while the validation recognition rate slowly increased and remained above 97% from the beginning, 

indicating that the model has good generalization ability. 

The training error and generalization error of the model used in this paper steadily decline when 

the iteration cycle gradually increases. After three iteration cycles, the training and testing correct 

rate are both stable at more than 98%, with high accuracy. The training process is relatively stable, 

with no significant error jumps. This experiment verifies the efficiency of the RCN model, which can 

effectively complete classification and prediction tasks. 

3.3 Sensitivity analysis of hyperparameter 

First, initialize all weight parameters using the Xavier method, set the initial values of all 

deviation parameters to 0, train 60000 training samples in the MNIST dataset, and adjust model 

parameters through back-propagation. Afterwards, transfer the training set to the trained model and 

observe the classification results. 
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Figure 6: Epoch=5             Figure 7: Epoch=10           Figure 8: Epoch=15 

As shown in Figure 6, when epoch=5, the validation error in the first two cycles rapidly decreases, 

and the validation error in the third iteration cycle rebounds, but continues to steadily decrease 

thereafter. When epoch=10, as shown in Figure 7, the validation error in the first three cycles rapidly 

decreases, and the third cycle also reaches the platform stage, before stabilizing again. When 

epoch=15, as shown in Figure 8, the situation is similar to Figure 7. The experimental results show 

that, with the constant change of epoch setting, the training correct recognition rate finally reaches 

99%, and the verification correct recognition rate finally reaches 98%. Therefore, the sensitivity of 

the hyperparameter iteration cycle is low. When it increases or decreases, the model performance 

does not change significantly. 

    

Figure 9: Batch_Size=16         Figure 10: Batch_Size=6 

    

Figure 11: Batch_Size=128       Figure 12: Batch_Size=256 

Secondly, control the iteration period, keep the learning rate and momentum method parameters 

constant, and take small batches as 16, 64, 128, and 256, respectively. When batch_size=16, as 

shown in Figure 9, the validation error has slightly increased in the third, fifth, seventh, and ninth 

cycles, but the overall trend is decreasing with the iteration cycle, which is not stable enough. When 

batch_size=64, as shown in Figure 10, the validation error rapidly decreased in the first three cycles, 

and also reached the platform stage in the third cycle, before stabilizing again. When batch_size=128, 

as shown in Figure 11, the training error is greater than the verification error. At the beginning, the 

training error is very large, which drops rapidly in the first two cycles, and then the two errors 

continue to decline gently. The model shows excellent generalization performance. Generalization 

error eventually converges to about 5, but the training error is higher than the previous super 

parameter selection. When batch_size=256, as shown in Figure 12, the situation is similar to Figure 

11, but the training error decreases more rapidly in the first two cycles and gradually decreases 
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thereafter. The experimental results show that when the size of hyperparameter small batch changes, 

the training recognition rate and test recognition rate of the model on the MNIST dataset show 

almost no change.  

 

Figure 13: Learning_Rate=0.005   Figure 14: Learning_Rate=0.01 

 

Figure 15: Learning_Rate=0.1     Figure 16: Learning_Rate=0.3 

Then, control the iteration period, keep the parameters of the small batch and momentum methods 

unchanged, and take the learning rates as 0.005, 0.01, 0.1, and 0.3, respectively. When 

learning_rate=0.005, as shown in Figure 13, the training error and verification error both decrease 

with the iteration cycle, but the training error is always high, the generalization error is far greater 

than the training error, and the model has a certain degree of overfitting. When learning_rate=0.01, 

as shown in Figure 14, the validation error rapidly decreased in the first three cycles, and also 

reached the platform stage in the third cycle before stabilizing again. When learning_rate=0.1, as 

shown in Figure 15, the training error rapidly decreases in the first four cycles, followed by a brief 

plateau period, and then slightly increases. When learning_rate=0.3, as shown in Figure 16, the 

training error is very large, the generalization error is very large, the network model is divergent, and 

the classification task cannot be completed. The experimental results show that the performance of 

the model changes greatly when the super parameter learning rate changes. When the learning rate 

decreases, the model appears over fitting phenomenon, the generalization error is large, and the 

training and test correct recognition rates are low; When the learning rate increases, the model 

generalization error begins to increase until the model diverges and the classification task cannot be 

carried out. 

 

Figure 17: M=0.3            Figure 18: M=0.5             Figure 19: M=0.7 

Finally, control the iteration period, with the small batch and learning rate parameters unchanged, 
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and take the momentum method parameters as 0.3, 0.5, and 0.7, respectively. When m=0.3, as shown 

in Figure 17, the validation error in the first three cycles rapidly decreases, and then continues to 

steadily decrease, resulting in a stable training process. When m=0.5, as shown in Figure 18, the 

validation error in the first three cycles decreased rapidly, and the third cycle also reached the plateau 

period, before stabilizing again. When m=0.7, as shown in Figure 19, the validation error rapidly 

decreased in the first two cycles, reached the plateau period in the third cycle, and then steadily 

decreased, with a slight rebound starting from the seventh cycle. Therefore, the sensitivity of the 

hyperparameter momentum method parameter is low, and the model performance does not change 

significantly when increasing or decreasing. To sum up, it can be found that hyperparameter such as 

small batch size and learning rate are more sensitive, while iteration period and momentum method 

hyperparameter are not sensitive to numerical changes. 

3.4 Hyperparameter cross validation experiment 

Through the above experiments, we have explored the sensitivity of model hyperparameters, and 

we would like to further explore the optimal combination of hyperparameters. By applying k-fold 

cross validation, the training set is evenly divided into 10 sets that do not intersect with each other, 

and different hyperparameters are selected to transform different sensitive hyperparameters. This 

experiment verifies different combinations of hyperparameters by selecting small batches and 

learning rates. Based on the results of cross validation, we obtained the average training error and 

average generalization error (excluding singular values) for different small batches with learning 

rates ranging from 0.005 to 0.195 and step sizes of 0.005, as shown in Table 2: 

Table 2: Cross validation experimental results data 

Batch_Size Mean Train_Loss Mean Val_Loss 

32 Divergence Divergence 

64 1.999409 4.658475 

96 0.283355 0.956955 

128 0.581042 0.583492 

160 5.957884 2.987078 

192 0.107769 0.402529 

224 1.013017 0.314624 

256 1.321170 0.481471 

 

Figure 20: Cross validation results at Batch_Size=256 

Figure 20 shows the experimental results of learning rate, training error, and generalization error 

when the small batch size is 256. From the chart analysis, selecting too small a batch (such as 32) 

can easily cause overfitting, and both types of errors are relatively high. When the small batch size is 

160 and 256, the average generalization error has slightly increased, but overall it shows a downward 

trend. When the small batch size is 256, the generalization error is smaller than the training error, 

and the model exhibits extremely strong generalization performance. The learning rate ranges from 

0.005 to 0.05, and the training error rapidly decreases. There is a very small rebound at a learning 
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rate of 0.025, and then continues to decline; Singular values appear at learning rates of 0.055 and 

0.115. Based on the above results, while observing a reasonable decrease in training error, the 

hyperparameter combination with the lowest generalization error was selected. Finally, an iteration 

period of 10, a small batch size of 256 for gradient descent, a learning rate of 0.135, and a 

momentum method parameter of 0.5 were selected. 

4. Conclusions 

This article proposes a deep convolutional neural network model based on residual module to 

address the risk of overfitting caused by insufficient sample size when applying deep network 

models to handwritten digit recognition, as well as the problem of gradient vanishing and explosion 

caused by excessively deep network layers. The experimental results show that the training 

recognition rate rapidly increased from 91% to over 97% in the first three iteration cycles, while the 

validation recognition rate slowly increased and remained above 97% from the beginning, indicating 

that the model has good generalization ability. This experiment proves that hyperparameters such as 

small batches and learning rates are more sensitive, while iteration period and momentum method 

hyperparameters are not sensitive to numerical changes. The hyperparameter cross validation 

experiment has proven that selecting too small a batch can easily cause overfitting, and if the 

learning rate increases, the network is prone to divergence. By testing the sensitivity of each 

hyperparameter in the network model and selecting the optimal combination of hyperparameters, a 

deep convolutional residual network model with strong generalization ability and high positive 

recognition rate can be trained. 
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