
DeeTune: Design and Application of an eBPF-based

Network Framework for Baidu

Bo Li1,a,*, Shiwei Ma1,b

1Baidu APP Technology and Platform R&D Department, Baidu Inc, Beijing, China
alibo15@baidu.com, bmashiwei@baidu.com

*Corresponding author

Keywords: eBPF, Performance, Profiling, Tracing, Cloud computing

Abstract: With the development of cloud computing and the continuous development of

infrastructure, architecture upgrades and other technologies, Baidu's internal services are

gradually moving to the cloud environment. Although the efficiency of services has

increased significantly, some shortcomings and deficiencies of the basic capabilities of the

cloud environment have gradually become apparent, resulting in the inability to meet some

reasonable requirements of the enterprise, such as building the topology relationship between

different microservices and conducting the test session for The traditional way of

implementation is to record the real traffic to reflect and verify the function and so on. The

traditional way of implementation is often to implant the code into the business system to

make changes. However, given the diversity of business forms and technologies, the

conventional way has a lot of problems in terms of business intervention, communication

and coordination, performance, stability, and other aspects. In this paper, we introduce

Baidu's eBPF-based network framework: DeeTune, which provides the ability to create

service topology, record traffic, monitor non-intrusive metrics, etc., further improve the

efficiency of SRE and quality assurance.

1. Background

The scale of Baidu's microservices is huge and growing, and the dependency relationships between

services are also very complex. The service topology can show the global service and the calling

relationship between services, and can also contain monitoring information to show the golden index

between service links, so the service links are important for system observability, stability assurance

and infrastructure construction.

Due to the high cost of manual maintenance, the traditional way based on SDK and framework

has many problems, such as multiple technology stacks, business interventions, etc. The lack of a

global service topology will result in the inability to meet some actual business requirements:

 Stability assurance: lack of a service and traffic topology that supports rapid positioning and

accurate stop loss in the event of outages. When stability issues occur, the hope is that the service

topology can quickly locate the problem service and server space, efficiently inform and notify

dependent and dependent parties of the failed service, and assess the impact of failure analysis.

 Infrastructure development: there is a lack of a service topology to guide the relocation and

Journal of Artificial Intelligence Practice (2023)
Clausius Scientific Press, Canada

DOI: 10.23977/jaip.2023.060605
ISSN 2371-8412 Vol. 6 Num. 6

29

reconstruction of server rooms. In the past, sorting and confirming services when relocating server

rooms was an important but tedious task. Each server room relocation required a long time to sort

services and their dependencies, which not only required manpower, but also required reserving

machine resources, in addition to introducing stability risks.

 System reconfiguration and upgrade: lack of relationships between upstream and downstream

services to evaluate the impact of system reconfiguration and upgrades on upstream and downstream

services. How to accurately notify trusted and dependent parties during the upgrade process, and how

to obtain the data to assess the complexity of services such as fan-in and fan-out during the refactoring

process to assess whether services need to be split and merged, etc;

The huge scale of services, complex business types, and numerous technology stacks pose

challenges for quality engineers, such as building integration test environments, writing test cases,

and assessing the completeness of tests. Traffic Playback is one of the most advanced and mature

solutions for automated testing that enables rapid code regression capability by recording traffic

online and replaying it offline. It can significantly improve the efficiency of project iterations,

accelerate the progress of code regression testing, and ensure the quality of enterprise development.

There is no single schema and tools for recording traffic, and the capabilities and implications of

replaying traffic are severely limited:

 The enterprise technology stack is complex, and the supporting base libraries and frameworks

are also numerous, making it impossible to perform unified traffic recording through frameworks or

business transformation;

 Even a single technology stack and framework will face business interventions and consistency

issues, and stability may also be affected to some extent

 There are many access paths between services, such as gateway access, virtual IP access, direct

connection between services, etc., and it is not possible to record traffic through a unified data ingress

and egress;

Metrics (e.g., traffic, time consumption, etc.) and tracking calls between services is an important

foundation used in enterprises for stability issues and service performance optimization, but currently

all observation solutions are intrusive and require redesign of the framework or the enterprise itself.

On the other hand, in host and container monitoring, in addition to some static counters provided by

the operating system, there is a need to collect and aggregate data from various data sources to support

some deeper observation capabilities that help analyze and locate system problems. However, the

development difficulties and resource consumption for this type of capability are very large.

2. Introduction to eBPF

The root cause of the above technical challenges is the diversity of business forms and technology

packages selected for the enterprise. Horizontal, cross-business, and cross-technology stack

requirements impact specification, business intervention, communication and coordination,

performance, stability, and other aspects.

With the rapid development and application of eBPF technology in recent years, it can provide us

with new solutions and ideas to solve the above problems[1]:

 eBPF is a kernel-related technology, which has nothing to do with the technology stack and the

framework of the user state.

 In business non-intrusive way to get more kernel status and user status information, can to a great

extent to provide us with help and even solve the problem.

eBPF full name: extended Berkeley Packet Filter[2], is the Linux kernel state introduced a set of

general-purpose execution engine, which can trigger the Linux kernel based on the event to run

custom code logic: eBPF, known as extended Berkeley Packet Filter, is a set of general-purpose

30

execution engines introduced in the Linux kernel state that allow the execution of custom code logic

based on event-driven triggers in the Linux kernel:

 eBPF provides a software-defined kernel approach that can be used to implement logic such as

Linux dynamic tracing and Linux high-speed network packet processing;

 eBPF can insert specified hook code into the kernel without modifying the kernel source code

or loading kernel modules, and can be executed when the kernel or application is running at a

specified hook point (predefined hooks include system calls, function inputs and outputs, kernel

tracepoints, network events, etc.);

3. Features of eBPF

The eBPF technology has the following features:

 Safe and stable: by strictly limiting access to function sets, memory addresses, loop counts, and

code path triggers, the kernel has a built-in stable API that ensures that only eBPF instructions verified

as safe are executed by the kernel;

 Efficient: eBPF instructions continue to execute in the kernel without copying data to userland.

Using the Just-In-Time (JIT) compiler, which converts bytecode to machine code, execution

efficiency is equivalent to that of the kernel and execution is more efficient;

 Hot loading (continuous deployment): eBPF programs are loaded and unloaded without

rebooting the Linux system;

 Data interoperability: maps enable interoperability of user and kernel state data;

 Compatibility: eBPF provides a stable API that can run on old kernels, then it must continue to

run on new kernels;

eBPF technology can provide new ideas and solutions in security, tracking and performance

analysis, networking, observation and monitoring, etc:

 Security: security testing can be done from the system call, packet, and socket layers, e.g.,

writing firewall programs, developing a DDOS protection system, etc...[3]

 Tracing & Performance Analysis: the kernel provides many types of probes (probe points), such

as kernel probes, perf events, tracepoints, user space probes, XDP, etc., and eBPF programs can be

written to collect the information from these probes and in this way trace the program and analyze

program performance. to analyze program performance[4];

 Networking: powerful packet processing programs can be developed at the kernel level, such as

Cilium, to provide load balancing at the kernel level, to bring the service mesh to a deeper level, and

to solve the performance problem of Sidecar[5];

 Observation and monitoring: continuous observation and monitoring of these test points can

enrich the scope and depth of the metrics data. And more importantly, this work can be done without

changing the premise of the established procedures[6].

4. Best Practices

 Facebook: Katran open source load balancer, L4LB, DDoS, tracing

 Netflix: BPF frequent users, e.g. production environment tracing, profiling

 Google: Android, server security, observability and more, GKE uses Cilium as network

foundation by default

 Apple: uses Falcon to detect security risks

 AWS: using eBPF as RPC observability tool, etc.

 Alibaba: extensions to Terway, a container network plugin, extensions to ilogtail, an observation

tool.

 Bpftrace: Provides a quick way to implement dynamic tracing with eBPF, and can be used as a

31

simple command line tool or as a programming tool for beginners[7];

 BCC: BCC is a Python wrapper around the eBPF peripheral toolset for creating efficient kernel

tracing and manipulation routines that can greatly improve BPF program development[8];

 Cilium: Cilium is an eBPF-based networking, observability and security solution. It can

completely replace kube-proxy and provides deep network and security visibility and monitoring[9];

 DeepFlow: is a highly automated observability platform provided by a Chinese company as open

source, using new technologies such as eBPF, WASM, OpenTelemetry, etc., largely avoiding the

insertion of hidden code[10];

 Coroot: is an open source observability tool based on eBPF that converts collected data into

visual and actionable metrics to quickly identify and resolve application problems; modules that can

be executed when the kernel or application is running at a specific hook point (predefined hooks

include system calls, function inputs and outputs, kernel tracepoints, network events, etc.)[11];

5. Method And Application

5.1. Method

Although eBPF technology can better solve the problems of technology stack dependence and

business intervention, there are still many difficulties to be solved in Baidu's complex environment.

The environment in which Baidu deploys its microservices uses multiple PaaS platforms, multiple

container types, multiple kernel versions, and multiple CPU architectures. These are issues that need

to be considered when landing the eBPF agent. At the same time, the question of how to efficiently

implement the multiple tracepoints in kernel state and support logic in user state has further increased

the complexity and difficulty of system implementation.

By exploring various technologies and combining them with Baidu's actual business requirements,

we developed and implemented a series of eBPF-based network frameworks to meet Baidu's

requirements and scenarios: DeeTune, which consists of five subsystems, as shown in Figure 1:

Figure 1: DeeTune System Architecture.

 Agent: deployed on the physical machine in the form of a host agent. It loads and executes the

eBPF program, listens for the creation and destruction of processes in the kernel, the establishment

and closure of TCP connections, the reading and writing of sockets, etc., and processes the

32

corresponding events in the user state, obtaining data such as topology, metrics, and trace.

 Server: an independently deployed Otel Collector service that receives observation data reported

by the agent, analyzes and processes it, and then stores it in the appropriate memory for later retrieval

and analysis.

 Memory: used to store topology, record traffic and trace system data, providing different types

of memory for different types of data to ensure efficient storage and query analysis.

 CProm: Baidu's internal Prometheus and Grafana integration services, providing services for

querying large data sets via standard interfaces.

 API and Web UI: Provide OpenAPI and web visualization access to enable users in different

roles to access and use the platform's data and functionality in appropriate ways.

The service information is the most important basic data of the platform. All functions (such as

topology, monitoring, traffic recording) depend heavily on the service information, which is mainly

obtained and analyzed by the agent, including the service name, business line, IDC, BNS (Baidu

Naming Service), etc. The information can be obtained from three sources: Naming Service, container

runtime information, and container daemon. There are three sources of information: Naming Service,

Container Runtime Information, and Container Daemon.

Baidu's complex internal infrastructure environment makes obtaining service information complex

and difficult:

 Baidu has complex internal business scenarios, and different PaaS platforms are able to

customize the best online and deployment methods for each business scenario.

 Different PaaS platforms have different definitions of service information, registration content,

and formats in the naming service, so the platform agent needs to do a lot of compatibility work to

get the current service and service information of the invoked service.

 Baidu mainly uses three types of containers internally: matrix (a container type developed by

Baidu), container, and Docker.

 When PaaS deploys service instances, it writes some service information into container daemons

such as containererd, dockererd, etc., and different PaaS platforms may use more than one container

type, which makes it even more difficult for the agent to obtain service information.

The solution to the above problems mainly relies on the agent's compatibility and processing of

different scenarios, and where possible, communication and collaboration with different PaaSs to

inject service information in a unified and standardized way.

Baidu's internal CPU has the ARM A64 architecture in addition to the X86 architecture. Therefore,

we need to analyze whether each of the above tracepoints can be executed on both CPU architectures,

e.g., we need to perform compatibility processing for the sys_enter_open/sys_exit_open tracepoint

on ARM CPUs;

Agent requires certain host resources to run, so too much resource usage will affect the system:

 One part of the agent system is internal CPU -intensive computational logic to process kernel

events and eventually output data such as topology, metrics, trace, etc;

 The other part is memory-intensive logic used to store intermediate and run-time computation

data and provide data support for the computation logic;

In the production environment, the kernel can generate several K~hundred K events per second.

Therefore, the agent must have an efficient event processing function and an efficient data access

structure that reduces the use of locks and conflicts, etc. After several performance optimizations, the

DeeTune agent can now control the CPU /MEM in the production environment on 1.3Core/1G.

On the other hand, due to the existence of the eBPF tracepoint, all network requests on the machine

are processed by the kernel's eBPF program, so eBPF also has an impact on network latency for calls

between services. After testing in a real environment, it shows that triggering events in the tracepoint,

adding, deleting, modifying and checking the eBPF map, calling the bfp helper function and judging

33

the unpacking of Layer 7 logs takes about 30µs, which is negligible for most services.

5.2. Application

5.2.1. Service Topology

The eBPF-based service topology capability can provide highly accurate and complete service

topology data that can support efficient fault localization and analysis, strong and weak service

dependencies, fault rehearsal, service impact area analysis, and cross-computer space invocation. In

addition to visual topology diagrams, the service topology also provides an OpenAPI for the demand

side to develop and customize its own functions.

5.2.2. Traffic Recording

Traffic recording is a non-static requirement, and the agent must be able to perform the logging

task dynamically according to the recording policy based on the configuration. Traffic recording can

be created as a task on the platform and can specify the recording of traffic between any two services

that have a connection relationship based on the topology information. At the same time, you can

specify the recording policies, such as the recording time, the number of entries, the interface to record,

etc. QA via the callback when the task is registered, or via OpenAPI to get the task and recorded

traffic. As shown in the figure 2:

Figure 2: DeeTune Traffic Recording Architecture.

5.2.3. Monitoring metrics

Figure 3: DeeTune Monitoring Metrics Panel.

By default, DeeTune collects and aggregates resource metrics across hosts and containers, such as

34

CPU, MEM and so on. In addition to basic resource metrics, with eBPF technology we can
theoretically collect almost all metrics in the system, such as active and failed connections, network
retries, traffic statistics, process and container counts, kernel key metrics, and so on. By more closely
monitoring the system and containers, operations and maintenance engineers can more efficiently
pinpoint resource-related issues: PaaS platforms, for example, are prone to irrational resource usage,
high container deployment density, heavy overselling of resources, network health diagnostics, and
so on. As shown in the figure 3:

6. Conclusion

DeeTune is an eBPF-based networking framework implemented by Baidu that provides basic
functionality for cloud-native scenarios such as service topology, traffic recording, opentracing,
container resource and business traffic monitoring, and cross-computer space call detection. Some of
the features have already been deployed for pilot operation and have achieved initial success. This
paper analyzes the real-world problems and provides a comprehensive introduction to the design
methodology and application of DeeTune with respect to the technical benefits and applications of
eBPF.

In the future, it will be further optimized and extended in some aspects:
 Multi-protocol support: the current link metrics and traffic logging mainly support HTTP1, Redis

and MySQL protocols, and in the future, gRPC, bRPC, HTTP2 and other internal homegrown
protocols will also be supported

 Multisystem linking: linking information with the deployment desk, monitoring system, code
and continuous integration system, and quality and efficiency system can help the company find and
solve online problems and code issues more efficiently.

Acknowledgements

This work is supported by Baidu Inc. We sincerely thank the reviewers for their insightful
comments and suggestions to improve the quality of the paper.

References

[1] Miano S, Bertrone M, Risso F, et al. Creating complex network services with ebpf: Experience and lessons
learned[C]//2018 IEEE 19th International Conference on High Performance Switching and Routing (HPSR). IEEE, 2018:
1-8.
[2] Kehoe M. eBPF: The next power tool of SRE’s [J]. USENIX Association, 2022.
[3] Deri L, Sabella S, Mainardi S, et al. Combining System Visibility and Security Using eBPF[C]//ITASEC. 2019.
[4] Cassagnes C, Trestioreanu L, Joly C, et al. The rise of eBPF for non-intrusive performance monitoring[C]//NOMS
2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2020: 1-7.
[5] Sedghpour M R S, Townend P. Service mesh and ebpf-powered microservices: A survey and future directions
[C]//2022 IEEE International Conference on Service-Oriented System Engineering (SOSE). IEEE, 2022: 176-184.
[6] Liu C, Cai Z, Wang B, et al. A protocol-independent container network observability analysis system based on
eBPF[C] //2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2020: 697-
702.
[7] Kwak J H. A study on how to build a supercomputer monitoring and performance analysis system based on
Performance Co-Pilot, Bpftrace and Grafana[C]//Proceedings of the Korea Information Processing Society Conference.
Korea Information Processing Society, 2021: 118-121.
[8] Gregg B. Linux performance [J]. Online]. http://www. brendangregg. com/linuxperf. html, 2018.
[9] Qi S, Kulkarni S G, Ramakrishnan K K. Understanding container network interface plugins: design considerations
and performance [C]//2020 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN. IEEE,
2020: 1-6.
[10] Zhang QX, Wu YF, Yang Y, et al. Survey on Service Dependency Discovery Technology for Microservice Systems[J].
Journal of Software, 2023: 1-18.
[11] https://github.com/coroot/coroot

35

