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Abstract: Traditional lane detection methods are limited by factors such as camera position 

and perspective, and often encounter issues such as false detection and missed detection. 

This article conducts research on lane detection methods from the perspective of multi 

camera BEV, and proposes a circular lane detection method based on convolutional neural 

networks (CNN). In order to solve the occlusion problem perceived from traditional forward 

looking perspectives, an around system was constructed using multiple cameras, and a multi 

classification semantic segmentation network was innovatively designed to predict 

obstructions, greatly reducing the false detection rate of obstructed lane lines. After 

verification, the algorithm proposed in this article can achieve good lane line detection 

results in different environments. 

1. Introduction 

In recent years, with the rapid development of autonomous driving technology, lane detection as 

an important part of advanced driving assistance system, has attracted more and more attention. The 

traditional lane line detection method is based on computer vision and image processing technology, 

using the vehicle's front view camera to extract lane line features for lane line detection, including 

image preprocessing, feature extraction, classification and segmentation. Among them, common 

methods include edge detection[1], color space[2], filtering[3], etc. These methods mainly rely on low-

level features of images for processing, and their accuracy and stability are greatly influenced by 

environmental factors[4]. However, in complex scenes such as curves and intersections, traditional 

methods are prone to interference from factors such as lighting, shadows, and occlusion, resulting in 

inaccurate detection. 

The around view system can solve the problem that due to the influence of viewing angle, the 

detection accuracy of traditional forward-looking cameras is not high. It utilizes fisheye cameras 

installed around the vehicle body to transform the original image into a BEV perspective through 

distortion removal and inverse perspective transformation[5]. Then, feature point matching and image 

stitching are performed on four BEV images to obtain the around view image[6,7,8]. However, the 

image of the around view system is based on the transformation of front, rear, left, and right camera 

images, rather than a real bird's-eye perspective, making it difficult to obtain the road surface situation 
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after being obstructed by obstacles. Therefore, for obstacles obstructing the area, the around view 

system is prone to false detection of lane markings. 

2. Around view system 

The around view system constructed in this article consists of four fisheye cameras installed in the 

front, rear, left, and right sides of the vehicle body, as shown in Figure 1. Generating the around image 

usually requires fisheye camera calibration, inverse perspective transformation, and image stitching 

operations.  

 

Figure 1: Composition of the Surrounding System.  

2.1. Fisheye Camera Calibration 

The calibration of fisheye cameras is to determine the camera's internal and external parameters, 

that is, to determine the correspondence between feature points in world coordinates and feature 

points in the image. Usually, a chessboard is used for calibration. In this article, 7 chessboards of 

different sizes are arranged around the vehicle body for calibration, so that each fisheye camera covers 

as many chessboards as possible, while the corners cover the entire image as much as possible. As 

shown in Figure 2: 

 

Figure 2: Checkerboard calibration board  

2.2. Inverse perspective transformation  

The inverse perspective transformation is the process of converting real-world points into pixel 

points, and its mathematical expression is as follows: 
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In the formula, (X, Y, Z) T represents the coordinates of the projection point in the world coordinate 

system, and (u, v) T represents the coordinates of its corresponding pixel coordinate system. N is the 

internal parameter matrix, M is the external parameter matrix, and the expression is: 
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)                                                            (2) 

𝑀 = (𝑟1 𝑟2 𝑟3 𝑡)                                                          (3) 

In the equation, 𝑓𝑥 and 𝑓𝑦 are the focal length of the camera in both directions, 𝑐𝑥 and 𝑐𝑦 are the 

offset of the main point in both directions, r and t are external parameters.  

2.3. Image stitching 

Monography matrix is an important tool in computer vision for describing image transformations, 

also known as homogeneous transformation matrix. The dimension of the matrix is 3×3, as shown in 

equation (4), can describe the mapping relationship from one plane to another, that is, points on one 

plane can be mapped to corresponding points on another plane through a homography matrix. In this 

article, the homography matrix is used to perform BEV image stitching on the image after inverse 

perspective transformation. Due to the homography matrix describing transformations in 

homogeneous coordinates, its degree of freedom is 8. 

𝐻 = (

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

)                                                           (4) 

The conversion relationship between BEV subgraph and the image after inverse perspective 

transformation can be shown as follows:  

(
𝑢𝑎𝑣𝑚

𝑣𝑎𝑣𝑚
) ≃ 𝐻 (
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In the equation, (𝑢𝑢𝑛𝑑𝑖𝑠, 𝑣𝑢𝑛𝑑𝑖𝑠)T is the coordinate of the image point after inverse perspective 

transformation, (𝑢𝑎𝑣𝑚, 𝑣𝑎𝑣𝑚)T is the coordinates of the pixels in the BEV subgraph, and by expanding 

equation (5), we can obtain: 

ℎ11𝑢𝑢𝑛𝑑𝑖𝑠 + ℎ12𝑣𝑢𝑛𝑑𝑖𝑠 + ℎ13 − ℎ31𝑢𝑢𝑛𝑑𝑖𝑠𝑢𝑎𝑣𝑚 − ℎ32𝑣𝑢𝑛𝑑𝑖𝑠𝑢𝑎𝑣𝑚 = 𝑢𝑎𝑣𝑚              (6) 

ℎ21𝑢𝑢𝑛𝑑𝑖𝑠 + ℎ22𝑣𝑢𝑛𝑑𝑖𝑠 + ℎ23 − ℎ31𝑢𝑢𝑛𝑑𝑖𝑠𝑢𝑎𝑣𝑚 − ℎ32𝑣𝑢𝑛𝑑𝑖𝑠𝑢𝑎𝑣𝑚 = 𝑣𝑎𝑣𝑚               (7) 

Each pair of points can provide two equation constraints, and at least 4 pairs of points can be used 

to solve the 8 elements of the homography matrix using the Direct Linear Transform (DLT). However, 

to obtain more robust results, this article uses more point pairs to construct the minimum quadratic 

problem and use pseudo inverse methods to solve the H-matrix. Obtain the correspondence between 

the inverted perspective transformed image and the BEV perspective image, and then complete the 

stitching of the around view image. 
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3. Training dataset 

This article uses Carla emulator to collect simulation data for training. To perform dataset 

collection tasks, the simulator vehicle needs to use a camera to construct around view system. Due to 

the lack of a wide-angle fisheye camera with a large viewing angle in the simulator, and the general 

RGB camera only has a horizontal viewing angle of 90°. Therefore, this article uses four RGB 

cameras to build the around view system. Cameras are arranged on the vehicle in a front, left, rear, 

and right distribution. Compared to the fisheye camera model, when using RGB cameras to 

concatenate BEV images, a pinhole camera model can be used. Since the external parameters of the 

camera can be directly obtained in the simulator, while the internal parameters can be estimated 

through focal length and optical center. The homography matrix used in panoramic stitching can be 

transformed from internal and external parameters. The acquisition frequency of the camera in this 

article is designed to be 30Hz, with a resolution of 800 * 800 pixels. 

To obtain the semantic truth of the dataset, the vehicle is also equipped with four semantic 

segmentation cameras, which can provide semantic information for each pixel, such as the object type 

to which the pixel belongs (such as vehicles, pedestrians, roads, etc.) or the obstacle level of the pixel 

(such as free passage, stop signs, red lights, etc.). 

This article collected a semantic segmentation dataset of 10 categories, as shown in Figure 3, which 

includes common semantic elements during vehicle driving, including: road surface, sidewalks, 

pedestrians, cars, trucks, buses, bicycles, obstacles, lane lines, and obstructions. A total of 6639 BEV 

semantic image data were collected. To improve the training speed of convolutional neural networks, 

the input images were standardized using z-score. The ratio of the total number of lane line category 

pixels to the total number of background category pixels in the statistical training set is approximately 

1:25. Select a city map as the collection environment, and the collection scene is shown in Figure 3. 

Conduct a panoramic stitching of the four collected images to generate a semantic dataset from the 

BEV perspective. 

 

Figure 3: Dataset Example (Simulator Perspective).  

To solve the problem of camera angle occlusion, this article added an extra occlusion semantic 

class in the data preprocessing, as shown in Figure 4. In the BEV image, for each camera's light 

projection area, the area obstructed by obstacles is divided into occlusion. The purpose is to enable 

the model to learn the features of occluded parts better, to avoid mistakenly detecting occluded parts 

as semantic categories of lane lines.  
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Figure 4: Example of BEV perspective obstructing object semantics. 

4. Network structure  

4.1. Network Overview  

The semantic segmentation network is designed based on the Deeplab series of networks, which 

is a convolutional neural network-based image semantic segmentation method. By combining fully 

convolutional neural networks (FCN) with hollow convolutions (ASPP), it provides an efficient and 

accurate image segmentation solution.  

4.2. Encoder 

The encoder adopts the MobileNetV2 network, as shown in Figure 5. The network adopts Deep 

Separated Convolutions[9]  to reduce computational complexity and parameter count, and uses 

residual connections to enhance feature expression capabilities.  

 

Figure 5: Encoder 

The front part of this network consists of a series of deep separable convolutional layers and batch 

normalization layers for extracting low-level features of images. Several bottleneck blocks have been 

added to the back of the network to further extract high-level semantic information from the image. 

These bottleneck blocks include 1x1 convolutional layers, 3x3 deep separable convolutional layers, 

and batch normalization layers, as well as residual connections and linear activation functions. 

Finally, this network uses Global Average Pooling and a 1x1 convolutional layer to compress the 

feature map into a vector as input to the classifier. This design can effectively reduce the number of 

parameters in the model and enhance its perception of global features, thereby improving the 

performance and generalization ability of the model.  
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4.3. Decoder 

The decoder structure is a combination of an upsampling module and a deconvolution module. 

Specifically, the upsampling module uses Bilinear Interpolation[10] to upsample the feature map to 

twice the size, and then uses a 1x1 convolution layer to reduce the number of channels. The function 

of this module is to increase the resolution of feature maps and extract richer semantic information. 

Then, the deconvolution module uses deconvolution and concatenation operations to sample the 

feature map to a size of 4 times and fuse the feature information from different levels of the encoder. 

Specifically, the deconvolution operation can double the number of channels in the feature map and 

double the size of the feature map to obtain richer semantic information. The splicing operation fuses 

the feature maps of different levels of the encoder to improve the semantic segmentation ability of 

the model. 

Finally, the decoder uses a 1x1 convolutional layer and a softmax activation function to output 

pixel level category probability distribution for semantic segmentation.  

4.4. Loss function 

Tversky Loss[11] is a loss function used to train deep learning models for image segmentation tasks. 

Its proposal is mainly aimed at addressing the shortcomings of the cross-entropy loss function in 

dealing with imbalanced class problems. In image segmentation tasks, due to significant differences 

in the number of pixels in different categories, category imbalance is often encountered. The cross-

entropy loss function often leads the model to lean towards learning a larger number of categories, 

while ignoring a smaller number of categories. Tversky Loss introduces two parameters (𝛼  and 𝛽 , 
𝛼 +𝛽 =1). When calculating the loss function, different categories of pixels are weighted to better 

handle imbalanced category issues. Specifically, its calculation formula is shown in equation (8): 

𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 = 1 −
∑ 𝑝0𝑖

𝑁
𝑖=1 𝑔0𝑖

∑ 𝑝0𝑖
𝑁
𝑖=1 𝑔0𝑖+𝛼∙∑ 𝑝0𝑖

𝑁
𝑖=1 𝑔1𝑖+𝛽∙∑ 𝑝1𝑖

𝑁
𝑖=1 𝑔0𝑖

                                  (8) 

𝑝0𝑖  and 𝑝1𝑖  are the probability of predicting positive and negative samples for pixels in the 

equation, 𝑔0𝑖  and 𝑔1𝑖 are the probability that the true values of pixels are positive or negative samples. 

Use partial data in pre training to train hyperparameters 𝛼  and 𝛽  with different values. This article 

has tested the network segmentation capability, and the test results are shown in Table 1. 

Table 1: Test results of different hyperparameters  

hyperparameters Presion Recall IoU F-score 

𝛼=0.9,𝛽=0.1 0.626 0.864 0.585 0.682 

𝛼=0.8,𝛽=0.2 0.846 0.544 0.445 0.464 

𝛼=0.7,𝛽=0.3 0.824 0.604 0.570 0.528 

𝛼=0.6,𝛽=0.4 0.786 0.674 0.542 0.546 

𝛼=0.5,𝛽=0.5 0.756 0.744 0.649 0.606 

𝛼=0.4,𝛽=0.6 0.726 0.764 0.623 0.631 

𝛼=0.3,𝛽=0.7 0.646 0.824 0.605 0.650 

𝛼=0.2,𝛽=0.8 0.626 0.844 0.585 0.661 

𝛼=0.1,𝛽=0.9 0.586 0.904 0.545 0.697 

As shown in Table 1, when the 𝛼  value is large, the segmentation accuracy of the model can reach 

0.846, but the recall rate is only 0.544. At this time, the model can only segment some lane lines; 

When the value of 𝛽  is large, the segmentation recall of the model can reach 0.904, but the accuracy 

is only 0.586. At this time, the model segmented most of the lane lines, but also classified many 
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background pixels as lane line pixels. Considering the issue of lane line segmentation 

comprehensively, it is necessary to be able to segment most of the lane lines, which has a high recall 

rate. At the same time, too many background points cannot be judged as lane lines, which means the 

accuracy is not low. When 𝛽 =0.8, the model can simultaneously balance accuracy and recall, thus 

achieving relatively better segmentation results. 

5. Network training  

5.1. Software and hardware platforms and training processes 

Table 2 shows the software platforms used in the training and testing process of the lane line 

semantic segmentation algorithm network model. Considering the convenience of Linux system 

development and related dependency libraries, this article chooses Ubuntu 16.04 operating system as 

the development environment, uses Python as the algorithm development language, and TensorFlow 

as the deep learning framework. This article also relies on the OpenCV library to implement the image 

processing part.  

Table 2: Establishment of Experimental Platform Environment  

Projects  Software platform and software library  

Programming language  Python 2.8  

System  Ubuntu 6.04  

Deep learning framework  Tensorflow2.1  

Video processing function library  Opencv4.2  

Data processing function library  Numpy1.18 

In model training, it is necessary to set some hyperparameters to control the behavior of the 

algorithm, as shown in Table 3.  

Table 3: Test results of different hyperparameters  

hyperparameters value 

epochs 100 

learning-rate 1e-4 

batch-size 5 

input-size 256×512 

This article uses Loss weight technology to balance the influence between different categories. 

This is usually achieved by assigning a weight to each category, with higher weights indicating a 

greater contribution of the category to the loss function. The loss weight set in this article is shown in 

Table 4. Among the semantic segmentation tasks for a total of 10 categories, category 1 has many 

pixels, while categories 3 and 7 have very few pixels. Therefore, it is possible to assign lower weights 

to category 1 and higher weights to categories 3 and 7, to pay more attention to the pixels of categories 

3 and 7 when training the model. A higher priority has also been set for the semantic information of 

lane lines to ensure better training results. 

Table 4: Loss Weights by Category  

type  value  type  value  

1 Road  0.98 6 Buses  8.41 

2 Sidewalks  2.24 7 bicycles 10.91 

3 Pedestrians  10.47 8 Obstacles  2.38 

4 Vehicles  4.78 9 lane line  10.24 

5 Trucks  7.01 10 occlusion 2.79 
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The loss value variation curve during the training process of the instance segmentation branch 

network is shown in Figure 6. The results show that Tversky Loss has a good effect on network 

training. During the training process, the loss value of the training set gradually decreases, and the 

accuracy continues to increase. It tends to stabilize after reaching the last 30 rounds of training; The 

change trend of the loss value is similar and converges to a lower level, without any abnormal value 

jumps, and it is considered that the model training has been completed.  

 

Figure 6: Changes in accuracy and loss values for the last 30 rounds. 

5.2. Training results 

The visualization of the heat map in Figure 7 shows the confusion matrix results, and the number 

of pixels in each row has been normalized row by row. Each square represents the proportion of pixels 

corresponding to the predicted result to the true value, and the darker the color, the higher the 

proportion. From the confusion matrix results, the classification results of each category are good, 

with misclassification mainly occurring in confusion with the background category, and the 

proportion of confusion between different categories is relatively small.  

 

Figure 7: Confusion Matrix Results. 

The confusion matrix can be used to conveniently calculate the intersection and union ratio of 

segmentation results, as shown in Table 5. 

Table 5: Comparison Results of Various Types of Crossovers  

type  value  type  value  

road  0.970869 Buses  0.632753 

sidewalk  0.920751 bicycle  0.187117 

pedestrian  0.003265 Obstacles  0.861807 

vehicle  0.766647 Lane line  0.963886 

truck  0.613084 Occlusion 0.782592 
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From the value of IoU, the perception model constructed in this article has excellent semantic 

segmentation ability. Except for non-target semantics such as pedestrians and bicycles, the 

intersection to union ratio of all other categories exceeds 0.9, indicating that the network has strong 

perception ability for ground markings in driving areas of each category. 

Figure 8 shows the labels for semantic segmentation of the validation set, with different colors 

used for different semantic categories. Figure 9 shows the predicted results of the visualized algorithm 

output from the ambient perception algorithm. The perception algorithm trained in this article exhibits 

good semantic segmentation performance in different environments. Although some pixels have 

misclassified, overall, the contour of ground elements is relatively clear, and the integrity of semantic 

targets is good. 

 

Figure 8: Example of true values for lane line datasets (unobstructed).  

 

Figure 9: Example of Lane Line Prediction Results.  

6. Conclusions 

This article has studied the lane line semantic segmentation algorithm based on convolutional 

neural networks under the around view system, constructed the around view system in Carla, and 

collected ten classification simulation semantic segmentation datasets. Marked the lane lines and 

obstructed areas, and trained and tested the network; In response to the issue of imbalanced lane line 

pixel samples, the lane line semantic segmentation perception task from the BEV perspective was 

achieved by adjusting the hyperparameters of the Tversky Loss function and optimizing the CNN 

model using Loss weight technology. The following conclusions were drawn: 

1) The lane line detection algorithm constructed in this article can effectively segment lane lines, 

with accuracy and recall rates of 0.626 and 0.844, respectively. It basically solved the problem of 

inaccurate lane line recognition by traditional forward facing cameras. However, for other non target 

semantic information such as pedestrians and bicycles, this detection algorithm still has shortcomings. 

2) The trained network model has achieved an intersection to union ratio of 0.86 for obstacle 

segmentation, which can to some extent solve the problem of false detection caused by obstacle 

occlusion in the field of view.  
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