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Abstract: In order to improve the operational efficiency of the Apriori algorithm in the data 

preprocessing stage of large-scale data and achieve overall optimization of the Apriori 

project, a fast traversal merge pre-processing method is proposed by integrating an 

adaptive association mining threshold determination method. Firstly, the proposed fast 

traversal merging method is analyzed and compared with two benchmark algorithms, and 

the experimental results show that the running time of the fast traversal merging method is 

much lower than that of the two benchmark methods; secondly, according to the central 

limit theorem, a data adaptive support threshold setting method is proposed, which can 

avoid the subjectivity of the minimum support threshold setting in association mining; 

finally, the two proposed algorithms are applied to Apriori and the results show that the 

application of the proposed improved method for association mining gives significantly 

better results than association mining under the better processing of the benchmark 

algorithm, and thus can significantly improve the efficiency of solving the shopping basket 

problem. 

1. Introduction 

In today's increasingly competitive retail world, it has become a major concern for retailers to 

find the best product mix and match, to understand consumers' shopping habits and to develop 

marketing strategies, which helps to maximize the benefits. The Apriori algorithm is a common 

used algorithm for mining association rules, and it can discover the association relationships 

between different products in shopping basket data. Therefore, the Apriori algorithm can be 

designed to investigate the purchasing behavior of customers, which supports decision-making of 

retailers to develop marketing strategies. However, the processed data is restricted by specific 

requirements, and most transaction data exported from databases doesn’t meet the requirements. 

Hence, preparing the data in required formatting is a common thing before the Apriori algorithm 

application, and it is also a time-consuming stage, especially when the datasets are in large-scale 

size. In order to enhance the overall efficiency of the Apriori algorithm, this paper proposes an 

improved traversal merging of transaction data, which can realize faster data preparing. Generally, 
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the overall performance enhancement of the Apriori algorithm is realized from two perspectives: 

on the one hand, optimize the data preprocessing stage to improve the efficiency of generating a  “s

hopping basket” from a large amount of transaction data directly exported from the database; on the

 other hand, the Apriori algorithm itself has been optimized to improve the performance of associati

on rule mining.  

This paper aims to improve the overall efficiency of the Apriori algorithm, from the perspective 

of combining both the data preprocessing and the Apriori algorithm itself together. Conclusively, 

there are two main contributions of this paper, which are shown as the follows on. 

(1) Constructing an approach of fast traversal merging of transaction data. Under the practical 

application scenario of the Apriori algorithm, it is common that the direct use of transaction data 

exported from databases will inevitably increase the execution time. For the reason that, the 

exported transaction data expressed by data list should be merged in the proper required formatting. 

(2) Proposing a self-adaptive thresholds determination method for the Apriori algorithm. Its main 

highlight lies in the fact that the self-adaptive thresholds can be adjusted by the real data distribution, 

and thus complete the target of the more reasonable and interpretable mining results.  

In the following parts, a brief literature review is introduced in section 2, and the proposed 

method of fast traversal merging is proposed in section 3. A series of experiments are conducted for 

validate the effectiveness of the proposed method, and an in-depth analysis is presented in section 4, 

including comparisons with some related baseline methods. Furthermore, a self-adaptive thresholds 

determination algorithm is introduced in section 5, and an applicable case study is designed to test 

the generality, feasibility and effectiveness of our proposed method in section 6. Finally, 

conclusions and future work are presented in section 7. 

2. Related work 

2.1 Application of the Apriori algorithm 

In addressing the improvement of the Apriori algorithm, various related research findings have 

emerged.[1] introduces a hybrid optimization approach using differential evolution and the sine 

cosine algorithm to automatically adjust numerical attribute intervals and mine numerical 

association rules. This method boasts strong adaptability and automation.[2] proposes a novel 

representation scheme based on chaos numbers in evolutionary computation for quantitative 

association rule mining.[3] presents the Butterfly Optimization Algorithm (BOA) to enhance the 

efficiency of basic algorithms during association rule mining, employing both CPU and GPU 

parallelization for synchronization and rule exploration operations.[4] introduces a new data 

analysis method called Apriori probabilistic analysis, focusing on scalability and using compressed 

bitmap structures to reduce memory usage and computation time.[5] enhances the Apriori algorithm 

by avoiding redundant database scans through the use of a two-dimensional array, reducing 

execution time and improving the effectiveness of frequent item set mining.Additional studies [6-8] 

demonstrate the general applicability and feasibility of the Apriori algorithm in various association 

rule mining scenarios. 

2.2 Parameters setting method of Apriori algorithm 

Determining appropriate values for min_support and min_confidence is crucial in association 

rule mining but often challenging. Currently, these values are typically set based on industry 

characteristics or domain experts' experience. For example, [6] utilized the Apriori algorithm on 

personal credit data in commercial banks, setting min_support = 10% and min_confidence = 90% 

after extensive analysis. This configuration yielded superior performance compared to other 
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settings.Similarly, in [7], the Apriori algorithm's association rules were employed for equipment 

warehouse cargo space allocation, with min_support = 0.26 and min_confidence = 0.8 chosen 

through parameter setting comparisons. In [8], min_support and min_confidence were set to 0.2 and 

0.6, respectively, based on expert suggestions and experimental analysis. 

A concise literature review reveals that min_support values lack regularity, often determined 

through exhaustive methods, which are laborious and subjective. This paper proposes a data 

adaptation approach using the central limit theorem to adaptively derive min_support values from 

the data itself. The central limit theorem, ensuring the sample mean distribution approximates 

normal with a sufficiently large sample size, serves as the theoretical foundation for this adaptive 

approach. 

2.3 Summary of related work 

As mentioned above, it can be deduced that most of the state-of-the-art methods only focus on 

optimizing the Apriori algorithm itself, but rarely consider optimizing its corresponding data 

pre-processing stage, which can also improve the overall efficiency of the Apriori algorithm. From 

this point, this paper aims to improve the overall efficiency of the Apriori algorithm, from the 

perspective of combining both the data preprocessing with the Apriori algorithm itself together. 

3. Proposed method of fast traversal merging for shopping basket data 

3.1 Characteristics of transaction data to be processed 

To summarize, this paper begins by describing the data used, which comprises supermarket sales 

list data with specific attributes. (Table 1) 

(1) Order numbers for purchase identification. 

(2) Date and timestamp of sales records. 

(3) Product names, among others. 

Table 1: Selected supermarket sales list data 

Id Date Name 

0420022301010001 2023-01-01 07:24:55 "Moco Rondo" High Calcium Cheese Sticks 

0220022301010001 2023-01-01 07:49:01 Amushi Flavoured Yogurt Mango Oatmeal 

0420022301010002 2023-01-01 07:52:56 Shuanghui 240G King of Kings 

0420022301010002 2023-01-01 07:52:56 Kangshifu Super Cooler 

0420022301010003 2023-01-01 08:05:50 190G Black Tea Toothpaste 

0420022301010003 2023-01-01 08:05:50 One Brush Premium Kids 

0420022301010003 2023-01-01 08:05:50 Kiss Clean 212 Toothbrush 

0420022301010003 2023-01-01 08:05:50 All Purpose Soap Powder 

0420022301010004 2023-01-01 08:07:03 Miyo Kids Toothbrush 920 

0420022301010004 2023-01-01 08:07:03 One Brush Premium Kids 

0420022301010004 2023-01-01 08:07:03 Mouthwash Apple Propolis Children's Toothpaste  

The data format involves each order number corresponding to one or more products, resulting in 

consecutive rows for the same order number, making it necessary to transform this format into the 

required "shopping basket" format for Apriori. This conversion presents challenges with existing 

methods. To address this data preprocessing issue efficiently, the paper introduces a fast traversal 

algorithm. This algorithm leverages the format characteristics of data with the same order number 

in the supermarket sales list, minimizing unnecessary traversal and ensuring each data traversal 

progresses towards the desired format for the Apriori algorithm. (Figure 1) 
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Figure 1: Consolidated results for selected supermarket sales list data 

3.2 Designed fast merging algorithm framework 

The proposed fast traversal merging algorithm flow chart is shown in Fig. 2, where data_id 

denotes the order number collection, data denotes the inventory dataset, temp denotes the 

intermediate variable for staging the matched data, baskets stores the target dataset, i and j denote 

related pointer variables, and n denotes the count variable.  

The procedures of the data processing are demonstrated as the follows on. Firstly, when j is less 

than the length of the dataset data, traverse the data_id find the first data in data that matches the 

order number of data_id[i]; then, traverse down data and add the data to the temp list until there is 

no matching data,and then assign the number of data and match data_id[i] in temp to n;next change 

the style of the data in temp according to the required style and add it to baskets, and Exiting the 

innermost loop. Furthermore, exit the sub inner loop and set j and i to j=j+n, i=i+1. Finally, continue 

the loop from the beginning until i is no longer less than the length of the data_id dataset.

 

Figure 2: Flow chart of the proposed fast traversal merging algorithm 
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Algorithm 1: Fast traversal merging algorithm for transaction data. 

Input: order number set data_id, list data set data. 

Output: target dataset baskets. 

1: j=0, baskets=[] 

2: for i in range(len(data_id)): 

3:      temp=[] 

4:      while j<len(data['single number']): 

5:           if(data_id[i]==data['single number'][j]): 

6:              a=j, b=j+100 

7:              for x in range(a,b): 

8:                  if(x<len(data) and data_id[i]==data['single number'][x]): 

9:                      temp.append(data['name'][x]) 

10:                 else: 

11:                     n=len(temp), tem3=','.join(temp), baskets.append(tem3) 

12:                     break  

13:          break 

14:     j=j+n  

15:return baskets 

3.3 Pseudo codes 

The fast traversal merge algorithm proposed in this article is implemented in Python language, a

nd pseudo code is described in Algorithm 1. 

The aim of lines 4 and 5 in Algorithm 1 is to find out where in data the data_id with subscript i 

matches for the first time. The purpose of line 6 is to set the starting point and the ending point for 

the lookup of the current order number, noting that the ending point b is not necessarily reachable, 

where 100 is user-defined and this value only needs to be greater than the maximum value of the 

item corresponding to the order number in this data. 

4. Experimental analysis and comparisons 

4.1 Experimental setting 

Firstly, for the sake of simplifying, some basic notations are introduced here. We use Gi to 

denote the first group of data, and there exist 500 list data in group G1, 1000 list data for G2 ...... 

and so on, up to the 20th group G20, where group i has 500 more list data than group i-1.  

Secondly, two kinds of algorithms are taken as baselines to compare with the proposed fast 

traversal merging algorithm in this paper. The algorithms to be compared are listed in Table 2. 

Table 2: Three algorithms of data merging required by the Apriori algorithm. 

Algorithm name Literature Time complexity 

Traversal algorithm [9] O(n*m) 

Fold-and-half algorithm [9] O(log2n!) 

Fast traversal merge algorithm This paper O(n) 

Thirdly, 10-round tests are conducted on each of the list three algorithms on the basis of the same 

set of data, and the execution times are obtained as the average of the run times (in seconds) of the 

10-round tests for each algorithm, which is used as the experimental results of the algorithms. The 

final 20-round test results corresponding to each algorithm are grouped under their respective data 

lists, and the test curves under the three algorithms are depicted for visualizing the experimental 
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results. 

4.2 Comparison with the existing methods 

In this section, two baseline algorithms are introduced: the traversal algorithm and the 

half-folding algorithm [9]. The traversal algorithm involves indiscriminating data traversal, leading 

to numerous repetitive and meaningless traversals. Conversely, the half-folding algorithm, while 

reducing some meaningless traversals, restarts each retrieval from scratch. To overcome these 

limitations, the proposed fast traversal algorithm capitalizes on formatting characteristics, 

specifically the presence of transaction data with the same order number in the supermarket sales 

list. This approach minimizes unnecessary traversals, allowing each traversal to progress more 

efficiently toward the desired format. 

The traversal algorithm directly iterates by searching for data with a given single number, while 

the half-folding algorithm employs a classic half-folding strategy on the list after eliminating 

matching data. The proposed fast traversal merging algorithm in this paper starts by identifying the 

sequence number of the first match to a given single number. It then initiates a downward traversal 

from this point, continuing until no further matches are found. The number of matched items is 

added to the sequence number of the first match, and the process iterates for the next tracking 

number until all tracking numbers have been matched. This algorithm is illustrated in Algorithm 1. 

4.2.1 Theoretical time complexity comparisons 

Assuming that there be m single numbers, n lists, with Xi (i is a positive integer) is the number of 

lists corresponding to the i-th single number, the corresponding time complexity of each algorithm 

is analyzed as the follows on. 

(1) As for the traversal algorithm T1, the time complexity T1 is O(T1) = O(m*n); 

(2) As for the fold-and-half algorithm T2, in this article, in general, the number of executions is 

shown as in eq.(1). 
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When m=n, each order number corresponds to only one list data, i.e. Xi=1, or when m=1, one 

order number corresponds to all lists, i.e. Xi=n. At this point, the number of executions both can be 

expressed as eq.(2) . 
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(where i=1,2,3,4,5... , which is a positive integer)        (2) 

And the time complexity O(T2)=O( !log2n ) can be calculated.In order to facilitate the subsequent 

comparison of time complexity, the scaling method is used to scale the equation (2) to between (n,

nn 2log ), i.e. the range of time complexity is O (n)<O (T2)<O ( nn 2log ) . It should be noted that O 

(T2) is closer to O ( nn 2log ). In addition to the above situation, we set Xi to any value and satisfy 

X1+X2+X3+X4+X5...+Xm=n. It can be seen that no matter how much Xi is equal to and it must go 

through eq.(3). 
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Times to fully search for the order number corresponding to Xi in the supermarket list, and the 

time complexity O (T2) remains O( !log2n ). In summary, no matter what value Xi takes, the total 
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number of executions will not change, that is, the time complexity O (T2)=O( !log2n ), and O (n)<O 

(T2)<O ( nn 2log ). 

(3)As for the proposed algorithm, i.e., fast traversal merging algorithm T3, the time complexity 

of is calculated as O (T3)=O(n). 

In summary, for the sake of brevity, the theoretical time complexity of the three algorithms is 

shown in Table 2. It is obvious that the time complexity of the three algorithms is sorted as O 

(T3)<O(T2)<O(T1), which means that the proposed fast traversal merging algorithm is superior to the 

mentioned baseline algorithms. 

4.2.2 Time execution time comparisons 

The ten parallel tests were performed on each of the 20 sets of transaction data based on each 

algorithm, and the average of the running times (in seconds) of the 10 parallel tests performed on 

each algorithm was taken as the test result for that set of data on that algorithm, and the 

experimental results were shown in Tables 3 and 4, with a visual graph comparison shown in Fig. 3. 

The experimental results show that, of the three algorithms, the proposed fast traversal merge 

algorithm consistently has a lower execution time than the other two algorithms, which is 

significantly different from the other two algorithms, and this difference becomes more pronounced 

as the amount of data increasing.

Table 3: Running time of each algorithm on different data volumes 

Data size 

Algorithm 
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Fast traversal 

merge algorithm 
0.0 0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Fold-and-half 

algorithm 
0.4 0.81 1.27 1.72 2.2 2.71 3.18 3.74 4.3 4.82 

Traversal 

algorithm 
0.36 1.41 3.32 6.07 9.23 13.65 18.45 24.45 31.14 38.74 

Table 4: Running time of each algorithm on different data volumes 

      Data size 

Algorithm 
5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 

Fast traversal 

merge algorithm 
0.01  0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 

Fold-and-half 

algorithm 
5.37 6.03 6.56 7.14  7.97 8.58 9.29 9.88 10.69 11.38 

Traversal 

algorithm 
46.94 56.2 66.06 77.1 88.36 100.34 113.19 125.83 139.73 155.49 

 

Figure 3: Running time comparison of the three algorithms on different data volumes 
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4.2.3 Effectiveness comparisons 

The Friedman test is a non-parametric test used to compare multiple sets of data to determine 

whether they are significantly different. If the p-value of the Friedman test is less than the 

significance level (usually 0.05), the hypothesis is rejected and the data are considered as 

significantly different. If the Friedman test is significant, a subsequent multiple comparison analysis 

can be performed, such as a rank operation on each group of data, calculating the average rank 

value of each group of data, and then determine which algorithm performs the bast efficient based 

on the average rank value. In this paper, the above scheme is used to verify whether there is a 

significant difference between the three algorithms, and to give a rank of the three algorithms in 

terms of execution efficiency if there is a significant difference. The results are summarised in Table 

5. 

Table 5: Results of non-parametric tests and multiple comparison analysis 

Algorithm name P_value Average_rank 

Traversal algorithm 5.329544830 

873161e-09 

 

3 

Fold-and-half algorithm 2 

Fast traversal merge algorithm 1 

In Table 5, we can see that P_ Value=5.329544830873161e-09, which is very small and far less 

than the significance level of 0.05. This indicates that our results are very significant, indicating that 

there are indeed significant differences in the performance of the three algorithms. Secondly, based 

on Average_ Rank can know that the Fast traversal merge algorithm has the highest execution 

efficiency among the three algorithms. 

In summary, there exist significant differences among the mentioned three algorithms, and it is 

clear that the proposed fast traversal merging method is significantly better than the other two 

methods, especially when the data is of large size. 

5. Self-adaptive threshold determination of the Apriori algorithm 

This section focuses on parameter setting for min_support and presents a self-adaptive threshold 

determination algorithm. To achieve a reasonable min_support, several considerations are made.  

Firstly, the generation of strong association rules relies on frequent item sets, which are sets of 

items occurring together frequently in the data. To ensure reliable and effective strong association 

rules, it's important to retain a moderate number of frequent items. Secondly, by arranging item 

frequencies in ascending order and using the mean value, a balanced threshold can be established. 

The mean is selected as the min_support value, ensuring that the number of frequent items remains 

moderate, striking a balance between strictness and looseness. Lastly, the central limit theorem is 

employed to estimate the mean of the entire sample. This theorem, a fundamental concept in 

probability theory, explains that the mean of a large number of independent and identically 

distributed random variables tends to follow a normal distribution under certain conditions. 

The analysis of supermarket sales data reveals that many items have extreme low sales volumes. 

To reduce interference from such items, a data adaptation method involving random sampling and 

recursive standard deviation calculations is employed. The stability of standard deviation values 

over multiple iterations indicates the suitability of using the mean as a substitute for 

min_support.Ultimately, the central limit theorem is applied to estimate the sample mean, yielding a 

min_support= 0.0019 (with 4 decimal places). (Table 6 and 7) 

Algorithm 2:Adaptive threshold determination algorithm for min_support. 

Input:  supermarket sales data. 

Output: min_support. 
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1: A random sample of 1000 items (the larger the sample size the better) is taken from the 

sales records, combined and the frequency of each item is calculated and the frequencies 

are considered as a new sample set. 

2: Calculate the mean of the sample set. 

3: Repeat steps 1 and 2 for 50 times to obtain 50 sample means. 

4: Calculate the mean of the 50 sample means, which is the estimated mean of the original 

sample commodity frequency. 

5: Let min_support be equal to the mean estimate of the frequency of the commodity in 

the original sample 

6:return min_support  

Table 6: Summary of merchandise sales volume statistics 

Statistical scope Sales equal to 1 Sales less than 6 

Quantity/type 776 2372 

Table 7: Summary of standard deviation results 

Recursive 

times 
1 2 3 4 5 6 7 8 9 10 

Standard 

deviation 
4.72 4.13 3.69 3.45 3.23 3.03 2.86 2.71 2.58 2.47 

6. Case study 

6.1 Applicable scenario 

The Apriori algorithm is a common algorithm for mining association rules. It can be used to 

achieve shopping basket analysis, to discover the association between different products in 

supermarkets, to study the purchasing behaviour of customers, and to assist retail companies in 

formulating marketing strategies. 

6.2 Association rule mining 

In this paper, we use the Python language to implement the Apriori algorithm, utilize the data 

prepocessing results obtained by the proposed fast traversal merging algorithm, and use the 

parameters determined by self-adaptive algorithm. The final experimental results are listed as the 

examples shown in Fig. 4. 

 

Figure 4: Examples of association rule mining results. 

6.3 Analysis of association mining results 

From Fig. 4, it is shown that the support for "Flammulina velutipes" and "Sanquan Meatballs" 

and "Lettuce" and "Sanquan Meatballs" is comparative high. The support level for these two groups 

of products is high, which means that customers are more likely to buy these two groups of 

products at the same time. In addition, 25.2% of customers bought "Sanquan meatballs" at the same 
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time as "Flammulina velutipes". After purchasing "Sanquan Meatballs", 28.5% of customers also 

purchased "Flammulina velutipes". The lift between the two products was 17.61, which is 

significantly higher than 1. Therefore, the two products are positively correlated and have a mutual 

promotion effect. Therefore, supermarkets can consider these types of product when placing and 

stocking goods, and when running promotions, supermarkets can consider selling 

"Flammulina velutipes", "Lettuce" and "Sanquan Meatballs" packaged. Alternatively, when run an 

event, sell one of the three at a discount to increase sales of the other two items. 

7. Conclusions and future work 

This paper proposes a pre-processing method for scenarios in which the Apriori algorithm 

processes supermarket sales list data. Through a fast traversal merging method, the data 

pre-processing stage is successfully optimized, thus further improving the efficiency and accuracy 

of the overall Apriori algorithm. The proposed method not only avoids the problem of algorithmic 

time and space complexity due to the large scale of data, but also improves the efficiency and 

accuracy of association rule mining, which helps retail enterprises to better study customers' 

purchasing behavior and develop marketing strategies to maximize benefits. In addition, this paper 

uses a self-adaptive parameters determination strategy using central limit theorem to improve the 

efficiency and accuracy of the algorithm. The experimental results show that our proposed method 

is faster than typical baseline method statically. 

In the future, other research directions can be explored, including applying other self-adaptive 

parameters setting method to enhance the performance of association rule mining. 
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