
High performance data processing of distributed database

and multi-core processor based on particle swarm

optimization

Lixia Liu

College of Information Engineering, Engineering University of PAP, Xi’an, Shaanxi, 710086,

China

Keywords: Particle swarm optimization; distributed database; multi-core processor

Abstract: As a product of the combination of computer network technology and database

technology, distributed database system has the characteristics of independence and

transparency, centralized node combination, replication transparency and easy expansion.

However, due to its complex access structure, distributed database system naturally has a

high demand for query optimization. This paper proposes a high-performance data

processing method between distributed database and multi-core processors based on PSO

(Particle Swarm Optimization) to solve the task scheduling problem between multi-core

processors. Inertia weight is introduced, which is added to the speed of particle flight to

adjust the global and local search ability of stationary particles. The research results show

that this method reduces the error rate of database query, and the overall performance of

database query method is better. The improved PSO algorithm improves the searching

ability of particles by dynamically adjusting the inertia weight. Therefore, the improved

PSO is a high-performance algorithm to solve the real-time task scheduling problem of

multi-core processors.

1. Introduction

With the rapid development of the times, more and more users hold mobile data terminals, and

their delivery of information with the Internet is increasing, which leads to an increasing amount of

information brought by users. The emergence of distributed database is to meet people's demand for

convenient access to massive data and the urgent need for super-large storage capacity [1]. As a

product of the combination of computer network technology and database technology, distributed

database system has the characteristics of independence and transparency, centralized node

combination, replication transparency and easy expansion. However, due to its complex access

structure, distributed database system naturally has a high demand for query optimization.

Task scheduling is always a NP-hard problem in multi-processing systems [2-3]. Therefore, how

to assign different tasks to processors with different computing capabilities has become the primary

problem whether the performance of multi-core processors can be fully exerted, which is also the

reason why the research on task scheduling strategy has become a hot topic in multi-core processor

technology research [4]. At present, heuristic algorithm and cuckoo algorithm are mostly used in the

Journal of Electronics and Information Science (2023)
Clausius Scientific Press, Canada

DOI: 10.23977/jeis.2023.080408
ISSN 2371-9524 Vol. 8 Num. 4

45

research direction of task scheduling among multi-core processors. Literature [5] proposes a task

scheduling algorithm for multi-core processors based on cuckoo search; Literature[6] proposes an

improved clonal selection algorithm for solving TSP problem, which is used to solve the multi-task

optimization combination problem in the processor.

Distributed analysis database mainly meets the needs of massive data storage and query analysis,

and mainly meets the challenges of scalability and high availability. The distributed transaction

database mainly solves the problem of distributed transactions [7-8]. PSO (Particle Swarm

Optimization) is a commonly used random search algorithm, which has better search ability than

traditional algorithms. In this paper, a high-performance data processing method of distributed

database and multi-core processor based on PSO is proposed to solve the task scheduling problem

between multi-core processors.

2. Data query optimization of distributed database

Compared with the traditional database, the distributed database has more advanced technology

as its own support, which enables it to better meet the needs of big data processing. Synchronization

technology mainly refers to the synchronization in the process of storing and transmitting data

information, and also refers to the synchronization of all stations and nodes when receiving

instructions. This is because many nodes and sites will work at the same time during the actual

operation of distributed database. When users need to pick up items, they only need to look at the

corresponding signs and tell the technicians what they need, and then they can get the items through

the corresponding instructions. Therefore, the emergence of synchronization technology not only

greatly improves the actual rate of users obtaining relevant data information, but also makes the

information exchange between users more convenient.

The ultimate goal of database query optimization is to improve the performance of database

system, but different query algorithms often make great differences in the execution efficiency of

query operations. Database query optimizer is an integral part of relational database management

system server. If it is cost-based optimization, the task of the database query optimizer is to

optimize an SQL statement by generating alternative execution plans and finding the execution plan

with the lowest estimated cost [9]. Even in the process of single table query, whether to select or

project first will produce great efficiency difference. If we add the idea of distribution, this

difference will become more and more obvious.

PSO is group-based, which moves individuals in the group to a good area according to their

adaptability to the environment. However, unlike other evolutionary algorithms, PSO does not use

evolutionary operators on individuals, but regards each individual as a particle without volume. The

standard PSO affects the performance of the algorithm for speed and position. However, in practical

application, there are many other factors that will affect the performance of the algorithm, which

makes the stability of the standard PSO poor. Therefore, this paper improves the standard PSO from

many aspects to improve its working stability.

Because the working environment of distributed database management system is very complex,

there are many kinds of query schemes, and the best scheme should be searched as the final query

result of distributed database management system, so the principle of solving query problems of

distributed database management system is shown in Figure 1.

46

Figure 1: The principle of solving database query problem

The query optimization goal of distributed database management system is to minimize the total

query cost and ensure the shortest query response time. The query cost calculation formula in a

distributed database system can be expressed as formula (1).

ttt COMCPUOIT coscoscos/ 
 (1)

Where tCOM cos is the communication cost.

In the research of database query optimization based on PSO, this research chooses the left deep

tree, and its process can be described as: "Numbering the relations contained in the query with n →

coding the left deep tree", in which the coding order of the left deep tree needs to be combined with

the sequence composed of leaf nodes, and the length of the sequence is n.

Inertia weight is introduced, which is added to the speed of particle flight to adjust the global and

local search ability of stationary particles.

   k

idgd

k

idid

k

id

k

id XprcXprcWVV 

2211

1

 (2)

Where W stands for inertia weight.

In addition, the speed iV
 of particles has a maximum speed limit. If the velocity idV

 of a

dimension exceeds the maximum velocity dVmax, of that dimension during the acceleration process,

the velocity of that dimension is limited to the maximum velocity dVmax, of that dimension.

  ,did,did VVVVif maxmax 
 (3)

The first term is the previous velocity of the particle; The latter two terms are usually understood

as the cognitive process of particles themselves and the interaction process between particles. The

cognitive part represents the thinking of the particle itself, which strengthens the acquired correct

knowledge and encourages the particle to reduce the error. The social part represents the process of

information sharing and cooperation between particles, and the correct cognition of particles is

imitated by other particles.

47

3. Thread scheduling of multi-core processor

The enhancement of processor performance has long relied predominantly on boosting its clock

frequency. However, this approach is fast approaching its limits due to concerns related to power

consumption and heat generation. As a result, the future of processor development increasingly

points toward multi-core processors. In multi-core processor systems, the key to improving the

efficiency of thread scheduling lies in effectively grouping threads and optimizing their scheduling.

The Particle Swarm Optimization (PSO) algorithm has emerged as a viable solution for addressing

these challenges. In comparison to Genetic Algorithms (GA), PSO operates without complex

genetic operations such as reproduction, crossover, and mutation. Instead, it evolves through simple

arithmetic operations, making it a practical choice for accelerating the search for optimal solutions.

Task scheduling in a multi-core processor environment involves the allocation of a set of tasks to

appropriate processors while adhering to specific constraints[10]. The objective is to minimize the

overall application completion time. This task scheduling problem is a combinatorial optimization

challenge that has been proven to be NP-complete. Consequently, finding an optimal solution

within polynomial time complexity remains a daunting task.

In practical PSO algorithm implementations, the consideration of information from neighboring

particles during the particle update process introduces some challenges. As the number of iterations

increases, a phenomenon known as "particle piling" occurs, leading to a gradual loss of diversity

among particles. This phenomenon in the problem-solving process can result in premature

convergence and a susceptibility to local optima. To mitigate these issues, the PSO algorithm often

incorporates meta-heuristic algorithms for local search, thereby enhancing its convergence

performance.

The quest for improved processor performance has been a driving force behind advancements in

computer technology. Historically, processor performance improvements have been primarily

achieved through increases in clock frequency. This approach, known as frequency scaling, has

allowed processors to execute instructions at higher speeds, resulting in faster computational

performance. However, as processors have continued to evolve and their clock frequencies have

increased, they have encountered significant challenges related to power consumption and heat

generation.

The limitations associated with increasing clock frequencies have led to the exploration of

alternative approaches to enhancing processor performance. One such approach is the use of multi-

core processors, which involve integrating multiple processing cores onto a single chip. These cores

can execute tasks independently and in parallel, offering the potential for substantial performance

gains without a significant increase in clock frequency.

The shift toward multi-core processors represents a fundamental change in processor design and

architecture. Instead of relying solely on increasing clock frequencies to achieve performance

improvements, the focus has shifted to optimizing the execution of parallel tasks across multiple

cores. This shift has profound implications for various computing domains, including task

scheduling algorithms.

Efficient thread scheduling is crucial for realizing the full potential of multi-core processors. In a

multi-core environment, multiple threads can run concurrently, allowing for greater parallelism in

task execution. However, effective thread scheduling involves assigning tasks to specific processor

cores in a manner that optimizes overall performance. This task scheduling problem is known as the

thread scheduling problem.

The thread scheduling problem is inherently challenging and falls into the category of

combinatorial optimization problems. It involves selecting an assignment of threads to processor

cores while considering various constraints, such as task dependencies and processor core

48

capabilities. The objective is to minimize the makespan, which is the total time required to complete

all tasks.

Finding an optimal solution to the thread scheduling problem is known to be NP-complete,

indicating that it is computationally intractable to solve within polynomial time complexity. As a

result, researchers have turned to heuristic and meta-heuristic algorithms to address this complex

problem efficiently.

One such meta-heuristic algorithm that has gained prominence in the context of multi-core

processor task scheduling is the Particle Swarm Optimization (PSO) algorithm. PSO is a

population-based optimization technique that draws inspiration from the social behavior of birds

flocking or fish schooling. It models potential solutions to a problem as particles in a multi-

dimensional search space and iteratively updates their positions based on their own experiences and

the experiences of neighboring particles.

One of the notable advantages of PSO is its simplicity. Unlike Genetic Algorithms (GA), which

involve complex genetic operations such as reproduction, crossover, and mutation, PSO relies on

straightforward arithmetic operations for updating particles. This simplicity makes PSO relatively

easy to implement and computationally efficient.

In the context of multi-core processor task scheduling, PSO operates by representing potential

thread scheduling solutions as particles in a search space. Each particle's position corresponds to a

candidate solution, and the quality of the solution is evaluated based on an objective function that

reflects the makespan or another performance metric. PSO's key innovation lies in its ability to

iteratively adjust the positions of particles to explore the solution space efficiently.

However, the PSO algorithm is not without its challenges. One common issue encountered

during PSO optimization is the phenomenon of "particle piling." As particles update their positions,

they tend to converge toward a limited region of the solution space. This convergence can result in

premature convergence, where the algorithm settles on a suboptimal solution.

To mitigate the problem of premature convergence, researchers often incorporate various

strategies, including the use of meta-heuristic algorithms for local search. These meta-heuristic

algorithms complement PSO by providing a means of exploring diverse regions of the solution

space, thereby enhancing the algorithm's ability to find optimal or near-optimal solutions.

In summary, the quest for improved processor performance has led to the exploration of multi-

core processors as a viable alternative to frequency scaling. Thread scheduling in multi-core

environments presents a challenging combinatorial optimization problem, with the objective of

minimizing the makespan. The Particle Swarm Optimization (PSO) algorithm has emerged as a

promising approach for addressing this problem. Its simplicity and effectiveness make it a valuable

tool for optimizing thread scheduling in multi-core processors. However, researchers continue to

explore ways to enhance the algorithm's performance and overcome challenges such as premature

convergence through the integration of complementary techniques.

PSO algorithm is a continuous algorithm, and its updating formula and process are designed for

continuous space, while the scheduling problem is a discrete problem. According to the

characteristics of multi-core processor scheduling problem, this paper reconstructs particle

expression, codes the position and speed of particles, and maps PSO algorithm to discrete space,

making it suitable for solving task scheduling problem.

Each particle in PSO algorithm represents a potential solution of a task scheduling problem.

Particle position vector is defined as a mn matrix X , with each column representing a task

assignment and each row representing a processor execution. Formula (4) is the particle position

coding scheme, and the constraint condition is formula (5).

49





















mnmm

n

n

xxx

xxx

xxx

X









21

22221

11211

 (4)

  



m

i

ijij xxts
1

1,1,0..

 (5)

According to the constraint condition, the value of the element ijx
 of the position matrix X is 0

or 1, each row can have multiple 1s, any element in each column can be 1, and only one element in

each column can be 1.

4. Experimental analysis

In order to test the performance of the improved PSO in this paper, the test platform is AMD

Ryzen 5 2600 XCPU, Weigang XPG DDR 43200 8G RAM, Kingston A1000 NVME M.2240 G

hard disk and Linux operating system, and the programming environment is VC++6.0.

The success rate of all database query optimization methods is counted, and GA and standard

PSO are selected for comparison test to analyze the advantages and disadvantages of database query

optimization results. It carries out five test experiments, with 100 queries each time, and the results

are shown in Figure 2.

Figure 2: Comparison of database query success rate

It can be seen that the database query success rate of this method is much higher than that of GA

and standard PSO, and the database query error rate is reduced, and the overall performance of the

database query method is better.

With the increase of the number of processors and tasks, the convergence speed of the improved

PSO algorithm is still very fast, and the system takes less scheduling time than the standard PSO

and GA, and can achieve better scheduling results under time constraints, as shown in Figure 3.

50

Figure 3: Scheduling results of 30 tasks assigned to 20 processors

The improved PSO algorithm improves the search ability of particles by dynamically adjusting

the inertia weight. The simulation results show that the improved PSO algorithm can get better

scheduling results in a very short time than other swarm algorithms.

5. Conclusions

PSO is a commonly used random search algorithm, which has better search ability than

traditional algorithms. In this paper, a high-performance data processing method of distributed

database and multi-core processor based on PSO is proposed to solve the task scheduling problem

between multi-core processors. The database query success rate of this method is much higher than

that of GA and standard PSO, and the database query error rate is reduced, and the overall

performance of the database query method is better. The simulation results show that the proposed

improved algorithm can get better scheduling results in a very short time than other group

algorithms.

References

[1] Mohsin, S. A., Darwish, S. M., & Younes, A. (2021). Qiaco: a quantum ant system for query optimization in

relational database. IEEE Access, (99), 1-1.

[2] Kim, H. J., & Kang, S. (2011). Communication-aware task scheduling and voltage selection for total energy

minimization in a multiprocessor system using ant colony optimization. Information Sciences, 181(18), 3995-4008.

[3] Mahmood, A., Khan, S., Albalooshi, F., & Awwad, N. (2017). Energy-aware real-time task scheduling in

multiprocessor systems using a hybrid genetic algorithm. Electronics, 6(2), 40.

[4] Guan, F., Qiao, J., & Wang, H. (2021). A multiprocessor real-time scheduling embedded testbed based on linux.

International Journal of Embedded Systems, 14(5), 451.

[5] Davis, R. I., & Burns, A. (2011). Priority assignment for global fixed priority pre-emptive scheduling in

multiprocessor real-time systems. Real-Time Systems, 47(1), 1-40.

[6] Malik, A., & Gregg, D. (2015). Heuristics on reachability trees for bicriteria scheduling of stream graphs on

heterogeneous multiprocessor architectures. Acm Transactions on Embedded Computing Systems, 14(2), 1-26.

[7] Davis, R. I., & Burns, A. (2011). Improved priority assignment for global fixed priority pre-emptive scheduling in

multiprocessor real-time systems. Real-time systems(1), 47.

[8] Rincon C., C. A., Zou, X., & Cheng, A. M. K. (2017). Real-time multiprocessor scheduling algorithm based on

information theory principles. IEEE Embedded Systems Letters, (4), 1-1.

[9] Chon, H., & Kim, T. (2010). Resource sharing problem of timing variation-aware task scheduling and binding in

mpsoc. Computer Journal, 53(7), 883-894.

[10] Shujuan, H., & Yian, Z. (2012). Improving multi-core scheduling method through using pptt (parallel priority task

tree) model. Journal of Northwestern Polytechnical University, 30(5), 652-656.

51

