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Abstract: The integration of artificial intelligence technology with modern network 

communication technology in an educational quantification system holds significant 

importance for enhancing the quality of classroom learning for students. In many vocational 

school education systems, teachers often act as knowledge transmitters. In traditional 

classrooms, it is often challenging for teachers to efficiently obtain the learning progress of 

each student. Due to the structure of the curriculum, students' classroom learning situations 

typically have to be assessed through a combination of assignments and end-of-term exams. 

This makes it difficult for teachers to promptly correct students' erroneous learning methods. 

These issues render many students who are trained through vocational education less 

adaptable to modernized societal production. This article takes the Shanghai Science and 

Technology Management School as a typical case and, based on classroom teaching theory, 

proposes a design and implementation method for an instructional platform that integrates 

artificial intelligence technology and network communication technology. The system design 

utilizes artificial intelligence technology for behavior and facial expression-based classroom 

teaching supervision and combines it with an automated assignment grading system to 

generate accurate analytical reports on students' classroom learning situations. Research 

indicates that using this system accurately analyzes students' learning situations during 

assignment completion, effectively enhances teachers' understanding of students' learning 

quality, and reduces teachers' burdens in classroom teaching. 

1. Introduction 

The swift evolution of artificial intelligence technology has ushered in extensive prospects for 

enhancing traditional classroom teaching approaches. Traditional classroom teaching necessitates 

educators to possess a deep grasp of instructional pace and students' learning journeys. Nevertheless, 

attaining this expertise calls for a substantial accumulation of teaching experience over time. Striking 

a balance between managing students' in-class learning dynamics and monitoring classroom teaching 

progress proves demanding, particularly in vocational education settings characterized by larger 

student cohorts. Conversely, cloud-based deep learning platforms have taken a distinctly alternative 

developmental trajectory.[1] These platforms permit users to engage in model training and inference 

on robust cloud servers. They offer an efficient avenue for conducting deep learning inference via 

network API interfaces, harnessing the power of cloud computing to substantially simplify the 
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intricacies of designing systems reliant on artificial intelligence.[2] With these attributes, the 

integration of artificial intelligence into conventional classroom monitoring applications becomes a 

tangible possibility. 

Conversely, cloud-based deep learning platforms have taken a distinctly alternative developmental 

trajectory. These platforms permit users to engage in model training and inference on robust cloud 

servers. They offer an efficient avenue for conducting deep learning inference via network API 

interfaces, harnessing the power of cloud computing to substantially simplify the intricacies of 

designing systems reliant on artificial intelligence. With these attributes, the integration of artificial 

intelligence into conventional classroom monitoring applications becomes a tangible possibility.[3] 

The educational platform that relies on the fusion of artificial intelligence and network 

communication technology serves as a versatile instrument for scrutinizing students' learning quality 

within the classroom. It furnishes educators and educational institutions with a scientifically objective 

analytical tool, enabling them to gauge students' learning progress and quantify subjective learning 

concepts. By conducting an in-depth analysis of platform requisites grounded in the real classroom 

milieu, a judicious allocation of functionalities and precise designs is undertaken. This encompasses 

facets like static design, post-processing considerations for artificial intelligence models, database 

analysis, and the design of visual interfaces. The functions of each module are elucidated to establish 

a comprehensive blueprint and system design, accompanied by delineated requirements. This 

educational platform notably streamlines the process for teachers to enhance teaching quality and 

encapsulate teaching scenarios effectively. The integration of artificial intelligence technology into 

the classroom environment, it notably heightens the caliber of traditional classroom instruction. 

The first section of this article discusses the challenges faced in traditional classroom teaching and 

provides an overview of the current status of artificial intelligence technology development. The 

second section delves into the design of an educational quality analysis platform that integrates 

artificial intelligence technology. Finally, the third section highlights the advantages of the 

educational quality analysis platform designed in conjunction with artificial intelligence technology. 

2. Related Works 

Our work mainly focuses on teaching platform design, module interconnection, student behavior, 

and action recognition. 

We focused on the design of the teaching platform, the security and reliability of multi-module 

interconnection, and the operational logic of the student behavior and action recognition module. In 

the following sections, we will discuss the related work in these fields and illustrate their relevance 

to the approach we propose. 

2.1 Online education platform 

In recent times, the landscape of digital classroom education has undergone a continuous and 

dynamic evolution, symbolizing a prominent trajectory within the realm of modern educational 

advancements. A pivotal emphasis has emerged on refining the precision and logical coherence of 

assessment mechanisms integrated into digital classroom teaching systems, effectively positioning 

this pursuit as a central imperative.[4] 

The groundwork for these contemporary endeavors can be traced back to the early 20th century, 

notably to the pioneering work of the American educator S. I. Pressey. As early as 1925, Pressey 

embarked on an exploration of program instruction and teaching machines. His visionary insights led 

to the creation of an ingenious automatic teaching apparatus capable of not only conducting 

assessments but also instantaneously grading them. This groundbreaking innovation laid the very 

cornerstone for what would eventually blossom into the realm of Computer-Based Education 
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(CBE).[5] 

The initial concepts of teaching machines and program instruction sprouted around the 1950s, 

germinating from Pressey's foundational ideas. Over the subsequent decades, these nascent concepts 

were meticulously nurtured and refined through unceasing experimentation and dedicated research. 

The fruits of these labors found resounding success, eventually permeating broader societal 

consciousness.[6] As the principles and functionalities of teaching machines and program instruction 

were progressively validated, they garnered widespread acclaim and catalyzed significant shifts in 

educational methodologies. 

The trajectory of these ideas, from Pressey's visionary insights to their contemporary manifestation 

in modern digital classroom education systems, marks a remarkable evolution. The ongoing journey 

signifies a potent amalgamation of innovative thought, practical implementation, and a resolute 

commitment to enhancing educational outcomes. This narrative underlines the profound and enduring 

impact of visionary pioneers like S. I. Pressey, whose contributions continue to resonate across the 

educational landscape.[7] 

2.2 Digital distance education platform 

In 2014, Zhang Wenjun introduced the concept of digital new media, highlighting its potential to 

revolutionize education by seamlessly incorporating distance learning and exceptional curriculum 

resources, notably video content and more.[8] Building upon this foundation, Guo Xiangyong's 

proposition aimed to construct a robust teaching resource repository encompassing diverse elements 

such as material databases, courseware archives, case repositories, exercise compendiums, a cohesive 

curriculum framework, and an integrated video system. An ingenious feature retrieval table was 

conceived to harmonize the manifold digital resource databases at the retrieval level. 

Within the landscape of campus networking, Li Taifeng accentuated the significance of 

amalgamating digital resources for collective access.[9] Central to this concept was the formulation 

of a user-friendly, copyright-conscious resource management system. This system facilitated the 

input of an array of digital resources, ranging from textual content and images to courseware, videos, 

and e-books. A notable aspect was the provision of a publishing function for textual and pictorial 

content, thus empowering users to disseminate their insights. 

Wang Zhihua and Yan Yazhen's standpoint brought the user experience to the forefront. Their 

proposition stressed the indispensability of user engagement and interaction within the system.[10] 

By creating avenues for users to actively participate and interact with the system, a dynamic and 

inclusive learning environment was envisaged. 

3. Method 

3.1 Problem Introduction 

Existing online educational platforms primarily emphasize the exchange of information, the 

distribution and storage of course materials, the provision of course playback, and the facilitation of 

interactive teaching between educators and students. However, they fall short in their ability to 

quantify and analyze the learning advancement of a large cohort of students, and they lack the 

capacity to furnish real-time feedback to instructors regarding students' in-class achievements. 

Likewise, conventional offline classroom instruction encounters the subsequent predicaments: 1. 

Educators are required to invest substantial time and attention to monitor students' learning 

progression, potentially creating a trade-off between instructional quality and student performance 

assessment. Consequently, precise evaluations of individual students' learning advancement become 

intricate. Our objective is to alleviate the pedagogical burdens within the classroom environment 
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through the utilization of neural network models and mathematical frameworks. This approach 

empowers instructors to channel more attention toward the delivery of course content. 

Contemporary classroom supervision platforms are intricately intertwined with the realm of deep 

learning. Our primary approach revolves around harnessing deep learning techniques to capture and 

analyze the intricate nuances of students' body movements and facial expressions. Furthermore, we 

employ mathematical modeling techniques to dissect students' performance on classroom 

assignments. Ultimately, we comprehensively evaluate students' holistic learning trajectories, 

amalgamating facial expressions, movements, and assignment scores. 

The deep learning-driven platform for analyzing the quality of classroom instruction, as proposed 

within this paper, encompasses three pivotal components: the student interface, the server module, 

and the instructor interface. Elaborated details regarding the implementation of these three 

components are provided below: 

1) The student interface is centered on data acquisition and upload functionality. Employing high-

definition cameras, this facet captures classroom scenes for each individual student, while their 

responses to classroom exercises are seamlessly transmitted through embedded terminal devices. 

2) The instructor interface empowers educators to either manually retrieve information from the 

student interface or automatically gather data at predetermined intervals. This versatility ensures a 

tailored approach to information retrieval. 

3) The server module undertakes a comprehensive analysis of students' learning data, employing 

both deep learning models and mathematical frameworks. Subsequently, it furnishes constructive 

feedback to the instructor interface. 

Regarding visual design considerations, the specific layout of font sizes and spacing in both the 

image capture interface and the classroom exercise upload interface of the student platform is 

elaborated upon in Table 1 and visually depicted in Figure 1. In a parallel manner, the constituent 

components presented within the interface for data analysis and real-time observation, situated at the 

instructor's end, are meticulously itemized in Table 2 and vividly illustrated in Figure 2. 

Table 1: Common settings of font size and spacing 

Setting Image acquisition interface Upload interface 

Written evidence 20.64 12.47 

Word spacing 16.82 15.31 

 

Figure 1: Layout of font sizes and spacing in both the image capture interface and the classroom 

exercise upload interface. 

The Convolutional Neural Network (CNN) model has solidified its position as a venerable 

archetype in the expansive domain of neural networks. Renowned for its merits, which encompass a 

judicious allocation of parameters, heightened precision, and real-time capabilities, the CNN model 

emerges as an especially apt choice for tasks necessitating meticulous classification endeavors.  
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Table 2: Data analysis and real-time observation 

 Storage number Main characteristics 

Title labels 11.68 14.66 

Data labels 16.72 17.22 

Classified labels 15.42 17.24 

 

Figure 2: The interface for data analysis and real-time observation. 

Our pursuit to discern and decode students' facial expressions and motions strategically leverages 

the prowess of the PP-LCNetV2 model. Functioning as the bedrock of our approach, this model is 

deftly positioned to capture the nuances of visual information. The PP-LCNetV2 model stands as a 

beacon of innovation, adeptly amalgamating a reparameterization strategy with intricate 

convolutional layers. These layers, characterized by their diverse array of convolutional kernel sizes, 

form a dynamic tapestry that enables the model to glean intricate patterns from the visual data. 

Moreover, the integration of optimization techniques such as point convolutions and shortcuts further 

amplifies the model's capabilities. 

This meticulously orchestrated optimization process is not a mere cosmetic enhancement. Rather, 

it plays a pivotal role in bolstering the model's prowess, particularly during the critical inference phase. 

By harmoniously amalgamating these optimization strategies, the PP-LCNetV2 model emerges as a 

potent instrument, enabling our approach to meticulously decipher the subtleties embedded within 

students' facial expressions and motions. 

The essence of this foundational network is eloquently captured in the illustrative depiction 

presented in Figure 3. This schematic rendering visually encapsulates the intricate interplay of 

reparameterization, convolutional layers, and optimization techniques that converge within the PP-

LCNetV2 model, endowing it with the capability to navigate the complexities of visual data and 

extract meaningful insights. 

 

Figure 3: The schematic outline of this foundational network. 

Building upon the foundation of PP-LCNetV2, we have instantiated models for both facial 

expression classification and classroom pose classification. In our endeavor to discern students' 

behaviors within the classroom context, we meticulously compiled a dataset spotlighting student 

classroom behaviors, aptly titled SCBD. This comprehensive dataset aggregates a grand total of 

29,732 images, encapsulating the manifestations of 5 distinct categories of classroom behaviors. For 

a comprehensive overview of image distribution across the training and testing subsets of this dataset, 
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refer to Table 3 and Figure 4. 

 

Figure 4: The training and testing subsets of this dataset. 

Table 3: Training and testing subsets of dataset 

 drink listen phone trance write 

train 3550 7804 5350 6555 3521 

val -2662 -5853 -4012 -4916 -2640 

Contemplating the nuances of authentic classroom teaching environments, we hold the conviction 

that this dataset adeptly encompasses an array of student behavior representations exhibited within 

the classroom milieu. 

The evaluation of students' classroom learning progress is further enriched by the assessment of 

their scores on classroom exercises. To facilitate this assessment, we present classroom exercise 

questions to students through terminal devices. As students engage with these exercises, the student 

interface captures their facial expressions and behaviors. Subsequently, the previously outlined model 

is employed to scrutinize and analyze the facial expressions and behaviors exhibited by each student. 

The outcomes derived from this process are termed "behavior supervision results," while the 

solutions to the classroom exercise questions are designated as "quality supervision results." Both 

these aspects are meticulously recorded by the server module for every individual student. These 

recorded outcomes are subjected to processing, culminating in the generation of what we define as 

"classroom checkpoint scores." Each student is associated with multiple classroom checkpoint scores, 

which collectively contribute to their ongoing classroom learning trajectory. At the culmination of 

the class, these scores are integrated into the overall panorama of students' classroom learning 

progress, readily accessible through the instructor interface. 

After the successful analysis of students' facial expressions and behaviors, we denote the facial 

expression information as Xa, while behavior information is represented as Xm. The amalgamation 

of these two sets of information is encapsulated as Hm. Consequently, the formulation of Hm can be 

articulated as depicted in Equation 1: 

𝐻(𝑋, 𝑌) = − ∑ 𝑝(𝑋𝑎, 𝑋𝑚)𝑙𝑜𝑔𝑝(𝑋𝑎, 𝑋𝑚)𝑋𝑎
                                        (1) 

In line with the insights gleaned from the research conducted by Murtala, a discernible correlation 

has been established between students' classroom exercise scores and their exhibited behaviors and 

facial expressions.[11-12] Consequently, we proceed to define the interconnection between students' 

facial expressions, behaviors, and their classroom exercise scores as denoted by Lm. This intricate 

relationship finds its representation in Equation 2: 

H(P, Q) =  − ∑ P(Lm)logQ(Lm) n
i=1                                               (2) 

Each student's score at each classroom checkpoint is denoted as S. This score, designated as S, 

finds its mathematical representation in Equation 3: 
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𝑆 = −(𝐿𝑚𝑙𝑜𝑔𝐿𝑚 − (1 − 𝐿𝑚)log (1 − 𝐿𝑚̂))−1                                    (3) 

An elevated S value indicates a stronger correlation between the student's score and their 

performance in classroom behaviors. Conversely, if a student secures a commendable score on 

classroom exercises but garners a low S value, it implies the potential utilization of unethical means 

to arrive at the correct exercise answers. Through this quantification process, we effectively establish 

the intricate interplay between student classroom performance and their respective classroom exercise 

scores. In the conventional classroom setting, discerning such relationships typically necessitates 

educators to accumulate years of experience to accurately decipher such nuances. 

In the context of a classroom encompassing multiple students, we consolidate the scores of all 

students at a specific checkpoint, designating this collective score as St. Mathematically, the 

aggregate score, St, is expressed as illustrated in Equation 4: 

𝑆𝑡 = 1
𝑡⁄ ∑ ∑ −𝐿𝑚𝑡𝑖𝑙𝑜𝑔𝐿𝑚𝑡𝑖 − (1 − 𝐿𝑚𝑡𝑖)log (1 − 𝐿𝑚𝑡𝑖

̂ )̂𝑛
𝑖=1

𝑡
𝑗=1                         (4) 

In Equation 4, it can be observed that the aggregate scores St are always less than n, and the 

distribution of checkpoint scores for most students is not ideal. Therefore, we utilize Equation 5 to 

reprocess the scores and enhance their interpretation. 

𝑆𝑡𝑡 = 1
(1 + 𝑒− ∑ 𝑆𝑡0/𝑛𝑛

𝑖=1 )
⁄                                                         (5) 

We denote the scores of all classroom checkpoints for each student in a class as Stt. Using Equation 

5, we map Stt into more comprehensible indicators that evaluate students' classroom learning progress. 

This approach enables effective detection of students' classroom learning quality, provides real-time 

feedback to teachers about students' learning status and efficiency, and consequently enhances the 

overall quality of classroom teaching. 

4. Experiments 

In order to apply deep learning methods to the teaching supervision platform, we have designed 

and experimented with each computational node within the platform. The integration of deep learning 

and teaching supervision enables more efficient and accurate recognition and analysis of student 

classroom states. With the assistance of this system, teachers can easily and quickly obtain important 

information about each student's listening status, learning performance, and other relevant aspects. 

This gives the platform significant practical value, especially within the context of classrooms and 

online educational systems. Additionally, the system can help enhance the classroom teaching and 

management capabilities of young teachers. 

During the process of designing the system architecture, considering practical business 

requirements and drawing from past project development experiences, a standardized layered 

architecture pattern was chosen based on principles of flexibility and security. While this framework 

allows for clear implementation of deep learning models, it requires post-processing and integration 

of model results during execution. 

The teaching supervision platform designed in this paper is primarily composed of two parts on 

the server side. The first part is information collection, mainly achieved through deep learning to 

recognize student behaviors and facial expressions. The second part is information processing, which 

utilizes statistical algorithms to analyze and process the information collected in the first part, along 

with the scores from classroom assignments. 

To validate the effectiveness of our proposed methods, we conducted a standard experiment. The 

experiment was divided into two parts: the first part focused on facial expression classification models, 

while the second part concentrated on behavior classification models. 
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In the first part, we evaluated the student facial expression recognition model using the 

ILSVRC2012 dataset. This dataset comprises 1000 categories of images, each containing 1000 

images. We divided the dataset into two parts, with 85% of the images allocated to Dtrain and 15% 

to Dval. We randomly selected 1000 distinct categories from this dataset. Our primary focus was to 

evaluate the student facial expression recognition model within this specific setup. 

To demonstrate the reliability of the backbone network we selected, we conducted experiments 

using four different architectures of backbone networks on the ILSVRC2012 dataset. The comparison 

results for top1 performance can be found in Table 4, and the top5 results are presented in Table 5 of 

the experiments. 

Table 4: Comparison results for top1 performance 

Model Top-1 Acc(%) 

ResNet50 75.20 

MobileNetV3_Large_x1_25 76.40 

PPLCNetV1_x2_5 76.60 

PPLCNetV2_base 77.04 

Table 5: Comparison results for top5 performance 

Model Top-5 Acc(%) 

ResNet50 92.87 

MobileNetV3_Large_x1_25 93.00 

PPLCNetV1_x2_5 93.00 

PPLCNetV2_base 93.27 

Upon meticulous scrutiny of the data encapsulated within both Table 4 and Table 5, a striking 

pattern emerges. The PP-LCNetV2 backbone network model, standing as a testament to its prowess, 

boasts a Top1 accuracy of 77.04% and a Top5 accuracy of 93.27% on the ILSVRC2012 dataset. In 

contrast to its contemporaries, this model stands head and shoulders above the rest, showcasing an 

unparalleled degree of inference accuracy. 

These metrics serve as a testament to the meticulous engineering that underpins the PP-LCNetV2 

model. The model's architecture, harnessed with sophistication and precision, has enabled it to not 

only comprehend the intricacies of the dataset but also make astute categorizations that align 

remarkably well with ground truth labels. This superior accuracy, evident in both primary and broader 

classifications, cements the model's standing as an exemplar of excellence within its domain. 

The pronounced disparity in accuracy between the PP-LCNetV2 model and its counterparts echoes 

the culmination of dedicated research, thoughtful design, and meticulous training. It is an affirmation 

of the model's efficacy in seamlessly navigating the complexities inherent to the ILSVRC2012 dataset. 

This remarkable achievement reverberates well beyond statistical representation, reflecting the very 

essence of the model's capacity to decipher, comprehend, and classify a diverse array of visual data. 

In essence, the accolades garnered by the PP-LCNetV2 backbone network model reflect a triumph 

in the realm of inference accuracy. This model transcends the boundaries of its peers, paving the way 

for more refined and precise outcomes, and asserting its status as an exemplar of unparalleled 

accuracy in the intricate realm of dataset classification. 

Table 6: Prediction speeds for different models 

Model Predict Time(ms) 

ResNet50 8.07 

MobileNetV3_Large_x1_25 5.19 

PPLCNetV1_x2_5 7.25 

PPLCNetV2_base 4.32 

In practical application scenarios, the model's inference speed is also a crucial metric. We 
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conducted experiments using four different architectures of backbone networks on the ILSVRC2012 

dataset. Our experimental setup utilized an Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz computer 

platform with 64GB of memory, and the inference was performed using the OpenVINO platform. 

The prediction speeds for the different models are provided in Table 6. 

A perusal of the data encapsulated within Table 6 yields a conspicuous observation: the PP-

LCNetV2 backbone network model has achieved a remarkable feat in terms of inference speed. 

Clocking in at an impressive 4.32 milliseconds per image on the ILSVRC2012 dataset, this figure 

decisively positions the PP-LCNetV2 model as a frontrunner in the realm of computational efficiency. 

This accomplishment takes on an even more compelling sheen when juxtaposed against the 

performance of its contemporaries, as it evidently outpaces them by a considerable margin. 

This swift inference speed showcased by the PP-LCNetV2 model is imbued with profound 

significance. It resolutely addresses the demand for real-time responsiveness that stands as a 

cornerstone in practical application scenarios. By effortlessly maintaining this rapid pace of inference, 

the model seamlessly aligns itself with the dynamic pace of real-world applications, where timely 

insights and decisions are of paramount importance. 

The fusion of exceptional inference speed with precision is a hallmark feature of the PP-LCNetV2 

backbone network model. This synergy augments its prowess and solidifies its position as an 

invaluable asset in diverse fields where swift and accurate analyses are prerequisites. In essence, the 

model's performance is not just a technological achievement; it's a testament to its adaptability and 

relevance in domains where instantaneous responses are not a luxury, but a necessity. 

To demonstrate the reliability of the selected backbone network, we conducted experiments using 

four different architectures of backbone networks on the SCBD dataset. The comparison results for 

top1 performance can be found in Table 7, and the top5 results are presented in Table 8 of the 

experiments. 

Table 7: Comparison results for top1 performance 

Model Top-1 Acc(%) 

ResNet50 85.28 

MobileNetV3_Large_x1_25 90.71 

PPLCNetV1_x2_5 91.6 

PPLCNetV2_base 92.06 

Table 8: Comparison results for top5 performance 

Model Top-5 Acc(%) 

ResNet50 94.28 

MobileNetV3_Large_x1_25 95.33 

PPLCNetV1_x2_5 95.33 

PPLCNetV2_base 98.79 

Upon careful examination of the data presented in both Table 7 and Table 8, a conspicuous trend 
emerges. The PP-LCNetV2 backbone network model stands out by attaining an impressive Top1 
accuracy of 92.06%, coupled with an equally noteworthy Top5 accuracy of 98.79%. These 
remarkable figures are gleaned from the meticulous evaluation of the SCBD dataset. When positioned 
against other competing models, the PP-LCNetV2 model asserts its superiority by showcasing an 
unparalleled level of inference accuracy. 

Delving deeper into the underlying reasons for this exceptional performance, we postulate a 
compelling hypothesis. The unique characteristics of the SCBD dataset contribute significantly to this 
outcome. Notably, the dataset harbors a relatively modest number of distinct categories. However, it 
stands apart by featuring a substantial quantity of images per individual category. This nuanced 
distribution aligns seamlessly with the practical application scenarios that the model is designed to 
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cater to. 
This synchronization between dataset attributes and real-world application dynamics is likely the 

driving force behind the PP-LCNetV2 backbone network model's exceptional prowess. It's plausible 
to surmise that the model's architecture is finely tuned to capitalize on the enriched per-category 
dataset, resulting in heightened accuracy across the board. This effect is particularly pronounced when 
considering both broader classifications and more specific categorizations. 

In conclusion, the classification model forged through the utilization of the PP-LCNetV2 backbone 
network stands as a testament to exemplary performance. Its accuracy, evident from both general and 
specific scenario evaluations, underscores its suitability for a wide spectrum of applications. As 
evidenced by the statistical data and the alignment between dataset intricacies and real-world 
requirements, it's unequivocally evident that the PP-LCNetV2 model not only excels but thrives in 
capturing the nuances of diverse categories within a given dataset.  

5. Conclusion 

This paper proposes a solution to the problem of insufficient samples in severely distorted image 
classification. We propose a new WRAN backbone network for feature extraction from severely 
distorted images using a small sample classification method to provide more learnable feature 
information. Then we introduce the transduction module to reduce the skewness of the feature central 
distribution and facilitate classification. 

We conducted experiments on the DVF-cls dataset and our proposed method achieved significant 
improvements compared to existing small sample classification methods. The method requires fewer 
samples to achieve acceptable accuracy in classifying distorted images and can serve as a practical 
solution for pre-classifying data in image restoration. However, our proposed method still needs 
optimization in inference speed, and many issues need to be resolved. 
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