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Abstract: Many tasks demand high-quality remote sensing image annotation products that 

are difficult to achieve through existing automated methods. Obtaining high-quality pixel 

annotations is time-consuming and laborious. This study proposes architecture with 

controllable correction ability that can automatically generate image annotations and allow 

annotators to adaptively correct previous annotations by making simple guidance 

information after discovering errors. This method can be applied to any convolution-based 

network. A training method and metric were proposed to measure the efficiency of re-

annotation. We conducted experiments on the Vaihingen dataset using different base 

architectures and backbones. Our study shows that our training method can effectively 

direct the guidance module to utilize the guidance information and improve the re-

annotation efficiency up to 2.53 times. In addition, more advanced architectures may give 

better results. 

1. Introduction 

Obtaining pixel-level class semantic labels is helpful for urban planning land cover detection and 

training a better machine learning model for other tasks. To obtain pixel-level semantic annotation 

information from a large number of images, scholars have proposed many semi-automatic and 

automatic methods. These methods provide pre-annotation based on prior knowledge to reduce the 

workload of pure manual annotation. As these models inevitably produce pixel-level mislabeling to 

varying degrees, it is necessary to review and correct the mislabeled pixels after pre-annotation. 

With the development of aerospace technology, an increasing number of aerial images have been 

captured, and the ground object information described in the image has become clearer. However, 

the increase in information creates an increasing number of pixels that need to be annotated, and the 

more complex local texture also leads to a sharp increase in the difficulty of recognition. The 

method of purely manual annotation by pixels is becoming increasingly unrealistic, and people are 

turning to semantic segmentation models for pre-annotation. 

Nevertheless, even the state-of-the-art semantic segmentation model cannot match annotators in 

all tasks. To obtain pixel-level class semantic labels with high accuracy, the review process after 

pre-annotation and the process of re-annotating misclassified pixels are crucial. 

It is inefficient to use tools such as drawing to re-annotate the misclassified areas pixel-by-pixel. 
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To increase the efficiency of re-annotation, some methods based on spatial geometry and texture 

information [4], [6], [7], [14] allow for correction of mislabeling by adjusting their own parameters 

to adapt to perturbations such as contrast and scale changes [10]. 

Although the method based on spatial geometry and texture information can easily correct its 

own parameters to adapt to pixel-level semantic segmentation tasks in different scenes, searching 

for the appropriate parameters can be a time-consuming and tedious task. Aerial images have the 

characteristics of intra-class diversity and inter-class similarity; therefore, it is difficult to find a set 

of appropriate parameters in large images to distinguish each category well. Many model 

parameters are usually determined by practical experience and modifying some parameters, such as 

thresholds, can easily lead to changing the original correct annotation to the wrong annotation. 

Human beings can establish an intuitive impression of space, so they can easily judge where the 

error occurs, but it is difficult to judge how to modify parameters to correct this area. Compared 

with the pixel-by-pixel annotation method, the method based on spatial geometry and texture 

information is subject to parameters, yet human annotators are unable to translate their spatial 

intuition to machine parameters. 

Compared with traditional machine learning algorithms such as decision trees [15], Naive Bayes 

[16], Support Vector Machines (SVM) [17, 18], and deep learning methods, especially the 

convolutional neural network (CNN) method, show excellent feature recognition ability and 

generalization ability in semantic segmentation tasks. Popular semantic segmentation models, such 

as SegNet [12] and U-Net [13], have been used in aerial image classification in many studies [21-

25], and achieved good results. Deep convolutional neural networks (DCNNs) achieve better 

performance through multi-layer abstraction and tight integration, but at the cost of their internal 

parameters not being interpreted as intuitive things [1]. In contrast to the method based on spatial 

geometry and texture information, which can fine-tune the parameters to quickly correct the 

annotation, the deep convolution network must spend a long time to retrain after adjusting the 

hyper-parameters, which is very expensive. Furthermore, almost all deep learning models for 

semantic segmentation do not provide the ability to correct the error annotation. 

We expect the deep learning model to be able to perform not only general semantic segmentation 

tasks, but also to receive and refer to the manual guidance information for the re-annotation task. 

To solve the problems as mentioned above, this study proposes a new architecture called the 

deep guidance network (DGN). The DGN is mainly composed of a guidance module that performs 

before each convolution layer. When an image is input, the DGN is performed as a deep 

convolution network of semantic segmentation that can output annotation. When the guidance 

information is input as extra data, all guidance modules are activated, and the annotation of the 

output is based on the reference to the guidance signal. In the semantic annotation task, first, the 

DGN is used to predict the semantic labels of the input images. Then, a manual review is performed 

to find the mislabeled area and complete some simple marks in these areas, which are considered as 

guidance information. Finally, the input image and guidance information are fed into the DGN, 

which will be re-predicted with reference to the manual mark. The contributions of this study are 

summarized as follows. 

We propose a guidance module for modeling the information updating process of internal 

features and guidance information. It determines whether it is activated according to whether 

guidance information is received. When activated, it performs pixel-level correction on the feature 

map output by the convolution layer reference to the guidance mask. It is placed before each 

convolution layer to support information updates at different scales. 

Based on the guidance module, we propose a deep guidance network (DGN) that has an optional 

input to receive the guidance signal. When it does not receive the guidance information, the DGN 

outputs semantic labels that depend only on the images. When a guidance signal is received, all 
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guidance modules are activated to optimize the prediction labels. 

A new training method that can train the DGN more effectively is proposed. This method 

prompts the guidance module to learn how to integrate guidance information into a feature map. 

The trained model can adaptively correct mislabeled annotations according to the guidance 

information. 

The remainder of this study is organized as follows. Section II reviews related work. Section III 

describes the details of the proposed method. Section IV presents the experimental evaluation of 

this method. Section V presents the conclusions. 

2. Related Works 

This section reviews related work on semantic annotation. The existing methods can be divided 

into three categories: methods using annotation tools, traditional computer vision methods, and 

methods based on deep learning. 

2.1 Tools for Image Annotation 

Some tools attempt to reduce the number of interactions required for image annotation. ByLabel 

[2] detects the edge of an image and divides the edge points into multiple fragments. Users need 

only to select a small number of fragments recommended to form closed boundaries and quickly 

annotate the objects. Firefly [3] built a web-based annotation system that allows multiple users to 

use graphic objects online, such as lines, boxes, points, broken lines, polygons, curves, and free-

form annotations, and provides clear visualization. It also proposed an interactive image 

segmentation method based on an elastic spline to assist in annotating and generating ground true 

images. 

2.2 Method Based on Spatial Geometry and Texture Information 

Currently, there are many traditional machine vision methods for extracting semantic 

information from images. Aiming at image interference problems such as local target occlusion, 

radiation difference, and image blur, Dai et al. [4] proposed combining multiple image descriptors 

to improve the accuracy and performance of template matching in an interference environment. The 

ground objects in remote sensing images usually contain significant geometric information and 

texture. Qin et al. [5] used the geometry of buildings, used a line segment detector to detect and 

extract the line segments in ultra-high-resolution optical images and connected them into closed 

polygons, and used the bidirectional shortest path algorithm to extract the contour of a single 

building. Super pixel algorithms such as Simple Linear Iterative Clustering (SLIC) are often used to 

segment images, but they do not consider the semantic information of the image context. Amiri [6] 

proposed a remote sensing image semantic annotation method based on a region adjacency graph 

(RAG). It uses SLIC to segment the image and construct a RAG graph, examining the context, 

spatial, and spectral information of the image region. 

2.3 Deep Learning-Based Methods 

Deep-learning-based methods are widely used in remote sensing image annotation. Convolution 

networks cannot capture long-distance spatial relationships. Zhao et al. proposed effective pyramid 

architecture PSPNet [26] to distinguish between confusion categories and inconspicuous classes. 

Ronneberger et al. proposed intuitive and effective encoder-decoder semantic segmentation 

architecture U-Net [13]. Zhou et al. proposed U-Net++ [27] based on a series of nested dense 

9



convolutional blocks to bridge the semantic gap between the feature maps of the encoder and 

decoder. DeepLabv3 [28] designed atrous convolution modules to capture multi-scale contexts 

instead of using DenseCRF [29] post-processing for better performance. DeepLabv3+ [11] added a 

decoder module by extending DeepLabv3 to extract features at an arbitrary resolution. Mou et al. [7] 

proposed a spatial relationship module and a channel relationship module to learn and infer the 

global relationship between any two spatial locations or feature maps and generate a relationship 

enhancement (RA) feature representation. Niu et al. proposed the HMANet [8] architecture, which 

can more effectively capture global associations from the perspective of space, channel, and 

category. It uses the class augmented attention module embedded in the class channel attention 

module to calculate the class-based association, recalibrate the class-level information, and 

introduce a region shuffle attention module to reduce feature redundancy and improve the 

efficiency of the self-attention mechanism through region representation. When using a convolution 

network to annotate a new city that is not included in the training set, its accuracy may be 

significantly reduced. Benjdira et al. [9] proposed an unsupervised domain adaptive semantic 

segmentation method based on the generation adversities network [30-32], which can effectively 

improve the segmentation accuracy when migrating to a target domain captured by a different 

sensor is shown Figure 1. 

 

Figure 1: Pipeline of the proposed deep guidance network. 

3. Methodology 

This section describes the pipeline of the proposed method. There are two modes of the DGN. 

The first mode is to output annotations similar to other methods based on deep learning, and the 

second mode allows users to correct previous annotations. 

Fig. 1 shows this approach. Specifically, when given an input image, it is first fed into the DGN 

in step (1). The DGN adaptively extracts features and provides the first annotation image in step (2). 

Then, the annotated image is submitted to the user for manual review in step (3). When necessary, 

the user can make a guidance mask in step (4) containing guidance information and feed the 

guidance mask and the input image into the DGN in step (5). The DGN activates the guidance 

module as much as possible to embed the guidance information into the internal features, and give 

the second annotation image in step (6), which fully refers to the guidance information. To further 

improve the performance of the annotation, we back to step (7). 
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The DGN architecture can be seen as a fusion architecture that places a guidance module before 

each convolutional layer within a backbone semantic segmentation architecture. In addition, each 

guidance module in the network is associated with a pre-processing module, which is used to pre-

process the guidance mask for supporting all guidance modules in different resolution scales.  

Guidance modules have no strict requirements for the backbone, but better results can be 

achieved with more advanced architectures. In some architectures, feature maps may be treated in a 

special way, such as cropping or scaling to a size that is not supported by the guidance module. In 

this case, the guidance modules are not all active, even if extra guidance information are input is 

shown Figure 2. 

 

Figure 2: Pipeline of the proposed guidance module. 

4. Experiments 

Vaihingen is a relatively small village with many detached buildings and small multistory 

buildings. The Vaihingen dataset [19] contains 33 high-resolution true orthophoto (TOP) images 

with three spectral bands (red, green, and near-infrared) and the corresponding digital surface 

models (DSMs). The dataset contains six categories of semantic targets: impervious surfaces 

(white), building (blue), low vegetation (cyan), tree (green), car (yellow), and background (red). 

We used confusion matrices and evaluation metrics, including overall accuracy (OA), kappa 

coefficient (Kappa), intersection over union (IoU), and mean intersection over union (mIoU) to 

quantitatively assess model performance. 
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TP, TN, FP, and FN are the samples of true positives, true negatives, false positives, and false 

negatives in the confusion matrix, k denotes a category, and t is the total number of categories; N 

denotes the total number of pixels; Nkk refers to the number of pixels correctly classified on the 

diagonal; Nk∑ and N∑k are the sum of the pixels in the k-th row and k-th column, respectively. 

The confusion matrix changes with the input of guidance information. Positive correction (PC) is 

defined as the number of pixel samples converted from FP to TP (or from FN to TN). 

Correspondingly, negative correction (NC) is defined as the number of pixel samples converted 

from TP to FP (or from TN to FN). The input guidance map is based on the final output of the 

network. The total guidance pixel (TGP) is defined as the number of non-zero pixels in the 

guidance mask. The correction score (CS) was proposed to fairly compare the performance in 

different architecture settings with different guidance maps: 
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𝐶𝑆 =
𝑃𝐶−𝑁𝐶

𝑇𝐺𝑃
                                                                   (4) 

On average, for every pixel specified in the guidance mask, the network corrects the CS pixels in 

the output. CS values provide a measure of the workload of handmade annotations to some extent. 

A higher CS value indicates that the network can use less guidance information and obtain better 

guidance performance. 

We used pretrained models on ImageNet [32] as the backbone. The Adam optimizer [20] was 

used in the training, and its initial learning rate was 0.001. Beta1 and beta2 were 0.9 and 0.999, 

respectively. In the GM layer, λ was set to 0.95. The input image was cropped randomly from the 

original image. In terms of data enhancement, random horizontal flip, vertical flip, and random 

scaling between 0.8 ~ 1.5 magnification were applied. Finally, the input image was scaled to 

384×384, the batch size was set to 8, and 20k iterations were performed.  

To study the performance of our proposed method, we conducted experiments on the Vaihingen 

dataset using different DGN architectures and different backbones. 

We begin by using some popular semantic segmentation architectures as the DGN base 

architecture. The GM is placed before each convolution layer and the number of accepted channels 

is set to be the same as the number of channels of the feature map accepted by the following 

convolution layer. When the number of channels is less than 16, the channel grouping k is set to 1; 

otherwise, k is set to the number of channels divided by 16 (unless it is not divisible by an integer). 

Table 1: Results of different base architectures with same backbone ResNet-50 

Method Backbone OA(%) mIoU(%) Kappa(%) TGP(%) PC(%) NC(%) CS 

DNG-FCN ResNet-50 82.21 56.04 76.63 1.09 1.76 0.56 1.11 

DNG-PSPNet ResNet-50 74.1 49.40 66.59 1.28 1.98 0.34 1.28 

DNG-LinkNet ResNet-50 79.36 53.99 70.99 0.67 1.42 0.21 1.80 

DNG-U-Net ResNet-50 80.54 57.99 75.64 1.07 2.57 0.29 2.12 

DNG-U-Net++ ResNet-50 78.07 53.26 72.08 1.05 2.49 0.41 1.99 

DNG-

DeepLabv3 

ResNet-50 78.86 54.73 73.32 0.75 1.70 0.35 1.80 

DNG-

DeepLabv3++ 

ResNet-50 82.39 61.55 78.31 0.64 1.58 0.22 2.13 

The TGP/PC/NC ratio was divided by the total number of pixel samples to make it more 

intuitive in Table 1, and we observed the best OA and CS results from DGN-DeepLabv3++ of 

82.39% and 2.13, respectively. We attribute our results to the design that DeepLabv3++’s dilated 

convolution layers and multi-scale fusion strategies provide ample space for guidance modules to 

inject guidance information. In addition, it can be noted that U-Net achieved the second highest CS 

value of 2.12. We believe this is because U-Net supports up to six resolutions of the guidance mask 

and holds more high-resolution feature maps than U-Net. 

5. Conclusions 

Aerial image annotation is of great value. Although existing deep learning methods can replace 

manual annotation, these methods do not support modifying the previous annotation when quality 

inspectors find the annotation error. In this study, a GM for injecting guidance information into the 

feature map of a deep network is proposed, and the deep guidance network is proposed, which 

simply places the GM in front of all convolutional layers. DGN can automatically generate aerial 

image annotations and allow annotators to adaptively correct previous annotations by providing 

simple guidance information after discovering errors. To solve the problem of how to apply 
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guidance information to layers with different resolutions, a downsampling method of guidance 

mask is proposed to support GM layer input with different scales, and a confidence based method is 

used to generate guidance information to effectively train the network. Finally, the network effect is 

verified on the Vaihingen dataset, which proves that the network can effectively combine the 

guidance information to correct the previous mislabeling. 
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