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Abstract: With the proliferation of environmental monitoring data, using machine learning 

techniques for anomaly detection in environmental time series data has become an active 

research direction. This study employs Long Short-Term Memory (LSTM) neural network 

models to detect anomalies in manufacturing emission data. The research first preprocesses 

the data by handling missing values and conducting stationarity tests. The data will be 

divided into training and testing sets, with the model trained on normal data and tested for 

anomalies. Experiments show LSTM outperforms classic methods like Isolation Forest, 

Matrix Profile, and AutoEncoder in handling enclosed pipeline emission data. This study is 

primarily due to LSTM's ability to capture long-term dependencies in time series data. 

Establishing this model facilitates improved environmental protection and safety 

management, enables automated monitoring and warning, reduces manual intervention, and 

lowers enterprise environmental compliance risks. This study provides an effective 

anomaly detection model for monitoring manufacturing emissions, serving as a reliable 

reference for introducing machine learning into environmental monitoring domains. 

1. Introduction 

In recent years, the proliferation of sophisticated data collection mechanisms in environmental 

monitoring has triggered an unprecedented surge in time series data volume. This surge presents a 

treasure trove of opportunities for uncovering insights into pollution sources, trends, and 

environmental quality and introduces inherent complexities. Real-world monitoring data, rife with 

missing values, outliers, and noise, poses formidable challenges to accurate analysis and 

interpretation. 

Addressing these challenges has spurred the exploration of machine learning techniques as 

robust tools for automated anomaly detection within environmental time series data. This study 

ventures into this realm, aiming to leverage these techniques to revolutionize the identification of 

anomalies, thereby fostering a more comprehensive understanding of environmental dynamics. 

The focal point of this study lies in environmental anomaly detection, with a specific emphasis 

on emissions emanating from manufacturing industry outlets. The primary goal is to harness the 

potential of machine learning, particularly Long Short-Term Memory (LSTM) neural networks, to 

detect anomalies within enclosed gas emission data. A nuanced understanding of pollutant 
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concentrations, trends, and cyclical fluctuations is paramount in devising effective anomaly 

detection models. 

2. Literature Review 

Environmental monitoring generates extensive time series data, offering insights into pollution 

sources and trends. However, this real-world data often includes anomalies like missing values, 

outliers, and noise, which can skew analysis if not appropriately managed. Machine learning 

methods have emerged as promising tools for automatically detecting environmental time series 

data anomalies. 

Several studies have applied machine learning models like LSTM neural networks to detect 

anomalies in pollutant concentration data. Housh and Ostfeld[1] developed an integrated logit model 

using dynamic thresholds and Bayesian sequential probability to detect contamination events in 

water distribution system data. Their model outperformed previous statistical methods by capturing 

time dependencies and combining evidence from multiple water quality indicators. Mukherjee et 

al.[2] compared various classification algorithms like logistic regression and random forest for 

detecting anomalies in Internet-of-Things sensor data. Lu et al.[3] proposed a sliding window 

approach to extract time series features and identify outlier subsequences in VOC sensor data, 

followed by time series decomposition and clustering to pinpoint anomalous values. 

Zhong et al.[4] delivered an extensive overview of machine learning in environmental science and 

engineering, focusing on four main applications: prediction, feature importance identification, 

anomaly detection (e.g., using DBSCAN for water network contamination and LSTM for pipe burst 

prediction), and the best practices for implementing machine learning in this field. 

Other studies have focused on handling missing values commonly occurring in monitoring data. 

Du et al.[5] analyzed how different missing data imputation techniques like multiple imputation 

impact the accuracy of LSTM models in predicting air pollutant concentrations.  

The literature demonstrates that machine learning paired with proper data preprocessing can 

enhance anomaly detection and time series forecasting for environmental monitoring data. Data 

preprocessing includes identifying and handling outliers, missing values, and latency. Advanced 

deep learning models like LSTM networks promise to capture complex temporal behaviours. Future 

opportunities include integrating spatial correlations, investigating anomaly causes, and improving 

model interpretability. 

3. Methodology 

Split into training and testing sets, the unsupervised anomaly detection uses only normal samples 

(0-6000) for training and identifies anomalies in the testing set (6001-40000). Evaluation ensures 

alignment with current contexts, specifically investigating Volatile Organic Compounds (VOCs) in 

paint shop exhaust pipes. Gas chromatography (GC) with a flame ionization detector (FID) is 

employed to detect organic compounds and volatile hydrocarbons efficiently. 

3.1. Data Set 

This study accessed data from the workshop's environmental monitoring points via an enterprise 

Internet of Things (IoT) platform. This IoT platform enables retrieving historical and real-time data 

through API interfaces. The Non-methane volatile organic compounds (NMVOCs) (mg/m3) data 

from Workshop 3 in June 2023 was selected as the study dataset for this research. The data was 

collected at a frequency of one sample per minute, resulting in 43,168 samples, each comprising 

seven attributes. Among these samples, 64 data points contain missing values, while 323 data points 
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exhibit anomalies. For a comprehensive distribution of different data and a detailed description of a 

specific feature, please refer to Table 1. 

Table 1: Emissions data feature characteristics summary. 

Feature Mean Std Min 25% 50% 75% Max 

Smoke Velocity (m/s) 13.339 1.09 0 12.86 13.37 13.88 17.54 

Smoke Pressure (Pa) -0.062 0.081 -2 -0.08 -0.06 -0.04 0.05 

Smoke Temperature (°C) 29.386 2.226 0 28 29.2 30.5 37.1 

Waste Gas Flow (m3/h) 107991.3 8869.9 0 104048 108247 112450 142064 

Smoke Humidity (%) 1.864 0.33 0 1.671 1.837 2.062 3.444 

NMVOCs (mg/m3) 31.279 11.419 0 22.975 28.969 37.643 108 

3.2. Data Preprocessing 

Machine learning relies on numerical input features, usually integers or floating-point numbers. 

Preprocessing data is crucial for improving machine learning model performance and resilience. We 

used a direct deletion method to handle missing values, removing 64 from our dataset.  

Ensuring time series data is stationary is vital. We conducted a Dickey-Fuller (ADF) test, 

determining stationarity, a key assumption for statistical models and time series analysis. The test 

provides ADF statistics, p-value, and critical values (see Figure 1). Our analysis confirms the 

dataset's stationarity without any apparent trend, affirming its suitability for this research. 

 

Figure 1: Stationarity Test Results. 

Next, we partitioned the dataset into training and testing sets. Specifically, data within the range 

of 0 to 6000 were designated as the training set, while data ranging from 6001 to 40000 were 

allocated to the testing set. 

4. Evaluation 

4.1. LSTM Method Results 

In this study, the effectiveness of the Long Short-Term Memory (LSTM) neural network for 

anomaly detection in emissions data from enclosed pipes is attributed to its robust modelling 

capability of long-term dependencies within time-series data. Precisely, the gate-controlled memory 

units within the LSTM model can capture and retain crucial information from historical time-series 

data. This capability allows a better understanding of the dynamic variations in emission data, such 
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as trends and seasonal cyclical fluctuations. Consequently, the LSTM model effectively compares 

current data points with historical baselines, aiding in more accurate anomaly identification and 

reducing false alarms. 

The experimental results depicting the LSTM model's ability to detect anomalies in time-series 

data are illustrated in Figure 2. The data time interval is one minute, and the red dots are abnormal 

data. As can be seen from the figure, the LSTM model can identify outliers in time series data. 

 

Figure 2: MNVOCs Data from June 7th, 2023, between 04:00 and 16:00. 

The LSTM model adjusts parameters using backpropagation, accommodating emission data 

dynamics by recognizing nonlinear relationships typical in pipe emissions. Unlike linear models, 

LSTM copes better with these complexities due to its nonlinear functions and multi-layer structure, 

fitting emission data more effectively and handling sudden anomalies well. 

The LSTM model utilized in this study demonstrates strong expressive capabilities through 

extensive training and optimization. It adapts well to the complex dynamic distribution of emission 

data, showcasing significantly improved anomaly detection performance compared to traditional 

methods.  

4.2. Compare with Other Methods 

Comprehensively assessing the performances of different methods in anomaly detection tasks 

related to emissions data from enclosed pipes, this study conducted comparative experiments 

involving several classic anomaly detection algorithms, including isolation forest, matrix profile, 

and auto-encoder. These methods represent detection strategies based on tree structures, similarity 

analysis, unsupervised learning, and local density estimation. By comparing the strengths and 

weaknesses of these methods, this research aims to identify the optimal anomaly detection approach 

for this specific application scenario. 

Compared to other methods, the experimental results indicate that models based on LSTM 

exhibit the best overall performance when handling emissions data from enclosed pipe outlets. 

Figure 3 depicts that the LSTM model's ROC curve distinctly outperforms other methods. This 

superiority primarily stems from its unique advantage in modelling the long-term dependencies 

within time-series data. Specifically, emissions data from pipe outlets exhibit significant time-

related features, such as periodic patterns and trend changes. LSTM effectively learns these 

temporal patterns, thereby enhancing detection accuracy and robustness. Moreover, there are 

periodic fluctuations in emissions, which LSTM can better model, thereby reducing false positives. 
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Figure 3: Comparison of ROC of various anomaly detection model 

Furthermore, LSTM demonstrates strong generalization capabilities, allowing it to adapt to 

emissions data from different pipes and facilities with simple deployment. In contrast, other 

methods may require parameter adjustments for new environments. This research demonstrates that 

LSTM is the optimal technological route for this anomaly detection task. Its time-series modelling 

and generalization capabilities are superior to other classic detection algorithms. 

5. Conclusions 

The primary objective of this study was to establish a machine learning-based anomaly detection 

model for monitoring emissions from manufacturing industry outlets. Employing Long Short-Term 

Memory (LSTM) neural networks as the core model, this research made significant strides in 

detecting anomalies within closed-channel gas emission data. 

The main findings indicate that the LSTM-based anomaly detection model performs well in 

handling emission data. Firstly, the LSTM model captures long-term dependencies within temporal 

data, enhancing its understanding of the dynamic characteristics of gas emissions, including trends 

and cyclical fluctuations. Secondly, its ability to handle nonlinear relationships in emission data 

improves anomaly detection accuracy. In contrast, conventional methods like Isolation Forests 

exhibit lesser capabilities in handling temporal data and generalization than LSTM. 

Hence, this study introduces a potent anomaly detection model for monitoring manufacturing 

emissions with extensive environmental conservation and safety applications. Future work should 

emphasize gathering diverse gas emission data to bolster anomaly detection models, enhancing their 

adaptability across scenarios. 
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