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Abstract: The real-time and accurate three-dimensional object detection is one of the core 

tasks in the perception of autonomous driving environments. In recent years, the 

development of deep learning technology and lidar technology has led to significant 

advancements in the application of three-dimensional object detection algorithms in large-

scale general scenarios. However, existing lidar-based three-dimensional object detection 

algorithms still face challenges in complex traffic scenarios, and the difficulty lies in 

balancing the accuracy and inference speed of the algorithms. In this regard, the voxel-

based single-stage three-dimensional object detection algorithm SECOND is used as the 

baseline algorithm and an efficient single-stage vehicle detection algorithm framework 

tailored for complex autonomous driving scenarios is proposed. Firstly, a residual structure 

is introduced and the feature channel number is reconstructed in the three-dimensional 

feature extraction backbone, which effectively reduce the loss of spatial geometric features 

in the point cloud during the feature extraction process and make the model training more 

stable. Secondly, the multi-scale feature fusion technology and a spatial feature attention 

mechanism are introduced and a more efficient two-dimensional feature fusion backbone is 

designed, which facilitates the learning of the model for vehicle size and orientation. The 

proposed algorithm is trained and validated on the open-source dataset ONCE. Compared 

to the baseline algorithm, the average detection accuracy for vehicles is improved by 5.64%, 

while maintaining an inference speed of 20 frames per second (FPS). This significantly 

enhances the algorithm's perception performance for vehicles in complex traffic scenarios. 

1. Introduction 

The perception algorithms provide necessary environmental information for downstream tasks 

such as decision-making and control in autonomous driving vehicles. The purpose of three-

dimensional object detection is to obtain information about the position, size, orientation, and other 

attributes of objects in the three-dimensional world. It is one of the core technologies in the 

environmental perception of autonomous driving vehicles and is crucial for enhancing driving 

safety [1]. In recent years, with the widespread application and continuous cost reduction of lidar in 
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the fields of autonomous driving and robotics, lidar-based three-dimensional object detection 

algorithms have been widely researched in both industry and academia. Compared to sensors such 

as in-vehicle cameras and millimeter-wave radar, lidar can directly acquire depth information and is 

not affected by lighting conditions, providing the highest accuracy and robustness [2]. Therefore, 

lidar-based vehicle detection algorithms have great research significance. 

The point cloud detection algorithms based on deep learning can be broadly categorized into 

three main technical approaches: methods based on raw points, methods based on voxels, and 

hybrid methods combining raw points and voxels. Methods based on raw points involve direct use 

of neural networks for feature extraction from the raw point cloud. Specifically, techniques such as 

multi-layer perceptrons and max-pooling layers are employed for point cloud feature extraction. 

Pioneering works such as PointNet [3] and PointNet++ [4] use neural networks to extract features 

from the raw point cloud, effectively capturing global and local spatial geometric features in point 

clouds, laying the foundation for subsequent raw point-based point cloud detection algorithms. 

Directly using neural networks for feature extraction from raw point clouds significantly limits the 

algorithm's inference speed, making it difficult to meet the real-time requirements of autonomous 

driving systems. For this, voxel-based methods have emerged. The core idea is to first partition 

irregular point cloud data in the perception scene into regular grids and then use two-dimensional or 

three-dimensional convolutions for feature extraction. VoxelNet [5] is the first work to propose 

partitioning the raw point cloud into a three-dimensional voxel grid and using three-dimensional 

convolutions for feature extraction. Its designed voxel feature encoding layer has been widely 

adopted in subsequent works. Considering that applying general three-dimensional convolutions 

directly to voxelized point clouds introduces a considerable computational burden, Yan Y et al. 

introduced three-dimensional sparse convolutions [6] and submanifold convolutions [7] to construct 

a three-dimensional sparse feature extraction backbone for extracting three-dimensional features. 

They proposed an efficient real-time point cloud detection algorithm, SECOND [8], tailored to 

autonomous driving scenarios, becoming a classic paradigm for subsequent voxel-based point cloud 

detection algorithms. Considering that methods based on raw points effectively preserve fine 

geometric features in point clouds, and voxel-based methods with voxel encoding are 

computationally friendly, hybrid methods combining raw points and voxels adopt a mixed 

architecture. PV-RCNN [9] is the most classic algorithm in this architecture. It first utilizes the 

SECOND algorithm as a one-stage method to obtain rough target candidate boxes. Then, using the 

farthest point sampling algorithm, it selects several key points from the raw point cloud. 

Subsequently, it aggregates intermediate layer features from three-dimensional feature extraction 

backbones and pseudo-bird's-eye-view features to key points. Finally, it refines the target candidate 

boxes obtained in the one-stage method using key point features, resulting in more accurate target 

bounding boxes. 

Based on the presence or absence of a two-stage refinement module, current point cloud 

detection algorithms can be classified into single-stage detection algorithms and two-stage detection 

algorithms. Single-stage algorithms often have higher inference speeds and relatively lower 

detection accuracy compared to two-stage algorithms, examples include SECOND, PointPillars [10], 

etc. In contrast, two-stage detection algorithms, due to the use of a two-stage refinement module, 

generally exhibit higher detection accuracy and reduced inference speed. Examples of two-stage 

algorithms include PV-RCNN, Voxel RCNN [11], CT3D [12], etc. Considering the real-time 

requirements of autonomous driving, SECOND is chosen as the baseline algorithm in this work. 

The car is one of the most prevalent participants in traffic scenarios, particularly in driving 

scenarios such as highways, which directly influences the decision-making and planning of 

autonomous vehicles. While the existing SECOND detection algorithm achieves good detection 

results in simpler driving scenarios, it still faces challenges in detecting vehicles in complex traffic 
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scenarios. To address this, the present study optimizes and improves the SECOND algorithm, 

resulting in a vehicle detection algorithm that is better suited for complex traffic scenarios. 

Due to the inherent properties of lidar, the point cloud scanned on the surface of a vehicle is 

highly incomplete and discontinuous. Moreover, this characteristic worsens with an increase in 

detection distance. This necessitates that detection algorithms maximize the utilization of target 

point cloud features during the feature extraction process. The existing SECOND algorithm has a 

limitation in the three-dimensional feature extraction backbone, as it does not sufficiently extract 

point cloud features, leading to a significant loss of fine geometric features. This limitation is a 

crucial bottleneck restricting the improvement of vehicle detection performance. To address this, 

the paper introduces a residual structure, which effectively reduces feature loss during the feature 

extraction process in the three-dimensional feature extraction backbone. The introduction of the 

residual structure also facilitates easier convergence of the algorithm. Additionally, the paper 

reconstructs the number of feature channels in the three-dimensional feature extraction backbone to 

make it more suitable for complex traffic scenarios. The role of the two-dimensional feature fusion 

backbone is to further integrate features from the three-dimensional feature extraction backbone to 

obtain the final features used for target detection. To ensure that the two-dimensional feature fusion 

backbone obtains more features favorable for vehicle localization, the paper introduces multiscale 

feature fusion technology and a spatial feature attention mechanism, designing a more effective 

two-dimensional feature fusion backbone. To validate the effectiveness of the proposed algorithm, 

experiments and validation are conducted on the ONCE dataset [13] collected in China. 

2. Vehicle Detection Method Design 

2.1. Framework Overview 

The SECOND method is a single-stage anchor-based point cloud detection algorithm. In this 

paper, it serves as the baseline algorithm, and optimizations are conducted around its network 

structure. The proposed network architecture includes point cloud voxel encoding, three-

dimensional feature extraction backbone, two-dimensional feature extraction backbone, and the 

detection head. The architecture of the proposed algorithm is illustrated in Figure 1. 

 

Figure 1: Algorithmic network architecture. 
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2.2. Voxel Feature Encoding 

Each point in the input point cloud is represented by three-dimensional coordinates (x, y, z) and 

reflectance intensity. Based on a predetermined voxel size, the input point cloud is segmented into 

voxels along the X, Y, and Z axes. Subsequently, each point in the point cloud is assigned to the 

corresponding voxel based on its coordinate position. The next step involves calculating the average 

feature value for all points within the same voxel, which serves as the voxel-level feature. 

2.3. Three-Dimensional Feature Extraction Backbone 

The role of the three-dimensional feature extraction backbone is to further extract features from 

the output of the voxel feature encoding module. The feature extraction capability of this module 

significantly impacts the subsequent effectiveness of object detection. To achieve vehicle detection 

in complex traffic scenarios, the three-dimensional feature extraction backbone needs to capture 

more discriminative geometric features from the point cloud. Considering the severe feature loss 

issue in the original three-dimensional feature extraction backbone of SECOND and the difficulty 

of its extracted point cloud features in meeting the requirements of vehicle detection in complex 

scenes, this paper introduces a more efficient three-dimensional feature extraction backbone by 

incorporating a residual structure [14] and reconstructing the feature channel number, as illustrated 

in Figure 2. 

 

Figure 2: Three-Dimensional Feature Extraction Backbone. 
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Similar to SECOND, the designed three-dimensional feature extraction backbone in this paper 

consists of four stages, performing 1×, 2×, 4×, and 8× downsampling, with feature channel numbers 

of 32, 64, 128, and 256 at each stage, ultimately outputting two-dimensional pseudo-bird's-eye-view 

features. The specific structure of the residual sparse module is shown on the right side of Figure 2. 

Compared to the original three-dimensional feature extraction backbone, the constructed three-

dimensional feature extraction backbone in this paper can extract finer geometric features from the 

point cloud, significantly reducing feature loss, and effectively capturing more discriminative point 

cloud features for complex traffic scenarios. 

2.4. Two-Dimensional Feature Fusion Backbone 

 

Figure 3: Two-Dimensional Feature Fusion Backbone. 

The two-dimensional feature fusion backbone takes the pseudo-bird's-eye-view features output 

by the three-dimensional feature extraction backbone as input and further integrates these features 

to obtain the final features used for vehicle detection. Among various traffic participants, vehicles 

have larger dimensions compared to pedestrians and cyclists. Therefore, the point cloud scanned on 

the surface of a vehicle contains the highest number of points. However, due to the limitations of 
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lidar's angular resolution, the number of laser beams, and occurrences of occlusion, the scanned 

point cloud on the vehicle surface is often incomplete and discontinuous. This characteristic has 

historically resulted in suboptimal performance of vehicle detection algorithms in scenarios where 

point cloud data is severely missing, leading to inaccurate predictions of vehicle size and orientation 

angles. 

In complex traffic scenarios, occlusion situations are frequent, imposing higher demands on the 

two-dimensional feature fusion backbone. To achieve accurate predictions of vehicle size and 

orientation, the features output by the two-dimensional feature fusion backbone need to include 

more target boundary features. To address this, the paper introduces a more efficient two-

dimensional feature fusion backbone, as shown in Figure 3. To fuse more comprehensive point 

cloud features, the proposed two-dimensional feature fusion backbone adopts a three-tiered design, 

fully integrating the features extracted at these three levels. Additionally, to direct the network's 

attention to more vehicle boundary features, the paper introduces the ECA attention mechanism 

[15], which effectively enhances the algorithm's accuracy in locating vehicles. Compared to the 

original two-dimensional feature fusion backbone, the designed two-dimensional feature fusion 

backbone in this paper can obtain more discriminative point cloud features. 

2.5. Detection Head 

The role of the detection head is to perform the final detection of vehicles, including category 

prediction and bounding box parameter regression. Consistent with SECOND, this paper employs 

an anchor-based detection head. The detection head comprises three sub-heads: category prediction, 

bounding box regression, and orientation classification. The orientation classification sub-head is 

introduced to further improve the algorithm's accuracy in predicting the orientation angles of 

vehicles. Based on the information predicted by these three sub-heads, the actual three-dimensional 

bounding box of the vehicle can be decoded. 

2.6. Loss Functions 

In order to facilitate rapid convergence of the network, this paper employs a series of loss 

functions, primarily including classification loss , bounding box regression loss , and 

orientation classification loss . The classification loss uses the Focal loss function, the bounding 

box regression loss uses the Smooth L1 loss function, and the orientation classification loss uses the 

Cross-Entropy loss function. The final total loss  is defined as: 

 

Where 
,

, ,represent the weights of classification loss, bounding box regression loss, 

and orientation classification loss. 

3. Experimental verification 

3.1. Introduction to Public Dataset 

The ONCE dataset was collected by Huawei in China and encompasses various weather 

conditions (clear, cloudy, rainy, etc.), different time periods (morning, noon, afternoon, night), and 

diverse road conditions (downhill, suburban, highway, tunnel, bridge, etc.). The dataset is captured 

using seven cameras and a 40-line lidar. Within the ONCE dataset, 5,000, 3,000, and 8,000 frames 

of point cloud data are separately annotated for training, validation, and testing purposes. The 
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labeled target categories include cars, trucks, buses, pedestrians, and cyclists. In this paper, cars, 

trucks, and buses are collectively categorized as vehicles. 

3.2. Implementation Details 

In this work, an end-to-end approach is employed to train the vehicle detection model. We utilize 

two Nvidia RTX 3090 graphics cards to train our network for 80 epochs, with a batch size set to 16. 

Additionally, we use the AdamW optimizer [16] and adopt a one-cycle learning rate optimization 

strategy, where the maximum learning rate is set to 1e-3, weight decay is 0.01, and momentum 

ranges from 0.85 to 0.95. Furthermore, in this study, the point cloud detection range is set to [75.2m, 

75.2m] along both the X and Y axes, and [-5m, 3m] along the Z-axis. The voxel size is (0.1m, 0.1m, 

0.2m). 

Table 1: The results of the improved algorithm are compared with those of other algorithms. 

Method Source Sensor 
Single Stage/ 

Two-Stage 
Car(AP) 

PointPillars CVPR2019 Lidar Single Stage 68.57 

PV-RCNN CVPR2020 Lidar Two-Stage 77.77 

VoxelRCNN AAAI2021 Lidar  Two-Stage 77.48 

Part-A2-Anchor TPAMI2020 Lidar Two-Stage 76.91 

CT3D ICCV2021 Lidar Two-Stage 78.66 

CenterPoints CVPR2021 Lidar Single Stage 66.79 

SECOND Sensors2018 Lidar Single Stage 71.19 

The proposed algorithm - Lidar Single Stage 76.83 

Table 2: The results of the improved algorithm are compared with those of the benchmark 

algorithm. 

Method 
Car 

0-30m 30-50m 50-inf AP 

SECOND 84.04 63.02 47.25 71.19 

The Improved Algorithm 86.62 70.25 56.4 76.83 

Performance Improvement +2.58 +7.23 +9.15 +5.64 

Table 3: Ablation experiments on the ONCE validation set. 

Method 
Car 

FPS 
0-30m 30-50m 50-inf AP 

SECOND 84.04 63.02 47.25 71.19 25 

SECOND+Residual 3D Trunk 85.96 69.95 55.08 75.93 22 

SECOND+Residual 3D 

Trunk+Multi-scale Spatial Feature 

Fusion Module 

86.62 70.25 56.4 76.83 20 

3.3. Experimental Results 

In this section, we compare the experimental results of the proposed model on the open-source 

ONCE dataset with baseline algorithms and some advanced 3D object detection algorithms. Table 1 

presents a comparison of the experimental results before and after the proposed algorithm, revealing 

a noticeable improvement in the average precision (AP) of vehicle detection by 5.64% compared to 
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the baseline algorithm. At distance scales of 0-30m, 30-50m, and 50-inf, the proposed algorithm 

demonstrates improvements of 2.58%, 7.23%, and 9.15%, respectively. This indicates a significant 

enhancement in the detection accuracy of mid-to-long-range targets. 

Additionally, we compare the proposed vehicle detection algorithm with some mainstream 

advanced algorithms, as shown in Table 2. From Table 2, it can be observed that the average 

detection accuracy of the proposed vehicle detection algorithm is 8.26%, 10.04%, and 5.64% higher 

than popular single-stage detection algorithms such as PointPillars, CenterPoints [17], and 

SECOND. Moreover, the proposed algorithm substantially narrows the gap with two-stage 

detection algorithms, being only 0.94%, 0.65%, 0.08%, and 1.83% lower than PV-RCNN, Voxel 

RCNN, Part-A2-Anchor [18], and CT3D, respectively. 

For a more intuitive representation of the advantages of the proposed vehicle detection algorithm 

over the baseline, Figure 4 provides a visual comparison of vehicle detection results. From top to 

bottom, the images depict the ground truth, baseline algorithm detection results, and improved 

algorithm detection results, respectively. Red circles indicate false positives, orange circles 

represent false negatives. It is evident that the improved algorithm exhibits significantly fewer false 

positives and false negatives compared to the baseline algorithm, further highlighting the 

effectiveness of the proposed algorithm. 

3.4. Ablation Experiments  

To verify the effectiveness of each component of the proposed method, we conducted ablation 

experiments testing each improvement on the ONCE validation set. Table 3 presents the 

experimental results. From Table 3, it is evident that the adoption of the residual 3D backbone 

results in a 4.74% improvement in the average detection accuracy compared to the baseline 

algorithm. At distance scales of 0-30m, 30-50m, and 50-inf, the detection accuracy increases by 

1.92%, 6.93%, and 7.83%, respectively. This indicates that the improved residual 3D backbone 

effectively promotes the network's learning of fine-grained point cloud geometric features, 

significantly reducing feature loss during the extraction process. 

Moreover, upon incorporating the designed multi-scale spatial feature fusion module on top of 

the residual 3D backbone, the algorithm's average detection accuracy for vehicle detection improves 

by 0.9% compared to the baseline algorithm. At distance scales of 0-30m, 30-50m, and 50-inf, the 

detection accuracy increases by 0.66%, 0.3%, and 1.32%, respectively. This suggests that the 

designed 2D feature fusion backbone effectively learns boundary point cloud features of vehicles, 

enhancing the precision of vehicle localization. 

Additionally, from Table 3, it is observed that the improved vehicle detection results in a 

reduction in the inference speed from the original 25 FPS to 20 FPS. This slight decrease of 5 FPS 

still satisfies the real-time requirements of autonomous vehicles. 
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Figure 4: ONCE verify a visual comparison plot on a set. 

4. Conclusions  

This paper proposes a novel single-stage anchor-based vehicle detection algorithm tailored for 

complex traffic scenarios, using the SECOND algorithm as a baseline. By introducing a residual 

structure and reconstructing feature channel numbers, a more effective three-dimensional feature 

extraction backbone is constructed. This approach successfully mitigates feature loss during 

extraction, preserving intricate spatial geometric features of point clouds. Additionally, through the 

application of multi-scale feature fusion techniques and spatial feature attention mechanisms, a 

more efficient two-dimensional feature fusion backbone is designed, further enhancing the 

algorithm's precision in vehicle localization. Experimental validation on the ONCE open-source 

dataset demonstrates that, compared to the baseline algorithm, the improved algorithm achieves a 

5.64% increase in the average detection accuracy for vehicles while maintaining an algorithmic 

inference speed of 20 FPS.  
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