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Abstract: In quantum information, pure states correspond to tensors. Two states equivalent 

under local unitary group or local general linear group can be used for the same quantum-

information tasks, and it is thus an essential problem to determine whether two tensors are 

equivalent. In this paper, we determine the two sorts of equivalence for 2-tensors in terms 

of the Schmidt decomposition and singular value decomposition of matrices. We also 

extend the equivalence to some 3-tensors, proving that Schmidt decomposition is 

unachievable for 3-tensors. However, we present a method to express 3-tensors using the 

logic behind Schmidt decomposition.  Furthermore, we generalized the scenario to higher 

dimensions and discussed the characteristic behaviors of different groups in tensor 

transformations. 

1. Introduction 

Quantum information science is an emerging and swiftly evolving field, with quantum 

entanglement being its main component of interest. Using local quantum operations and classical 

communication (LOCC), one can consolidate partially entangled pairs of particles into fewer pairs 

[1]. Under these same operations, classification of pure states of multipartite entanglement can be 

simplified using asymptotic transformations [2]. Two pure states of a bipartite system can be 

transformed locally, with the most efficient method identified by the authors in Ref [3]. A novel 

method to compute the entanglement of formation for a pair of qubits employs local quantum 

operations combined with classical communications (LQCC). This approach relates to the 

multiplication using a Lorentz matrix and incorporates a normalization [4]. Equivalence classes in 

sets of entangled states are defined using invertible local transformations. A W state is remarkable in 

that it retains bipartite entanglement for three qubits [5]. In Ref [6], authors found a classification 

methods for three qubits based on five entanglement parameters. In Ref [7], the authors examined the 

classification of four-qubit pure states using stochastic local operations and classical communications 

(SLOCC). The findings in Ref [8] expanded this classification to include multipartite states, 

encompassing infinitely many types of states that are inequivalent under SLOCC. Multidimensional 

determinants, also referred to as "hyperdeterminants" can be used to establish how local actions affect 

inequivalent multipartite entangled classes, providing classification of these states [9]. In Ref [10], 

the authors introduce a criterion for determining the feasibility of transforming between two pure 

states via SLOCC. This standard can also categorize 2 × M × N systems. In Ref [11], unitary 
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equivalence of quantum states is conditioned using the von Neumann entropy. This also uses the 

partial trace operation, a generalisation of the probability concept of marginal distributions for multi-

partite quantum systems, and the strong subadditivity (SSA) property, relating von Neumann 

entropies of quantum systems, are explained in linear algebra terms in Ref [12]. In Ref [13], authors 

introduce the Greenberger-Horne-Zeilinger (GHZ) states. Furthermore, Ref [5] proves that GHZ 

states and W states are not mutually convertible under SLOCC, as their minimal product 

decompositions have different numbers of terms.  

In this paper, we present applications of the Kronecker products on high-dimension tensors. We 

start by tackling the following problem. We construct two 2-tensors,  

𝑇1 = 𝑎 |0> ⨂ |0>+  𝑏 |1> ⨂ |1>  , and 𝑇2 = 𝑐 |0> ⨂ |0>+  𝑑 |1> ⨂ |1> , where |0> = (
1
0
) , 

|1> = (
0
1
) and 𝑎, 𝑏, 𝑐, 𝑑 are complex numbers. Can we find an element 𝑈 in 𝑈(2) × 𝑈(2) such that 

𝑈𝑇1 = 𝑇2, where 𝑈(2) is the 2 × 2 unitary group? If yes, then we say that the two 2-tensors are 

equivalent under local unitary (LU) transformation. If the group 𝑈(2)  is replaced by the 𝐺𝐿(2), i.e. 

the 2 × 2 general linear group, then we say that the two 2-tensors are equivalent under SLOCC 

transformation. For this purpose, we introduce the Schmidt decomposition for 2-tensors, the singular 

value decomposition (SVD) for arbitrary matrices, and construct the explicit conditions by which 

𝑇1and 𝑇2 are equivalent under LU and SLOCC transformations. We also generalize the problem to 

higher-dimension 2-tensors and 3-tensors. In particular, we find some 3-tensors which are not 

equivalent under LU transformation.  

2. Preliminaries to Matrices 

In this section, we introduce the preliminary knowledge and facts used in this paper. In Sec. 2.1, 

we introduce the different types of matrices. In Sec. 2.2, we review some basic matrix operations, 

namely addition, multiplication, and exponentiation. In Sec. 2.3, we present matrix transposition. In 

Sec. 2.4, we discuss the unitary matrix. In Sec. 2.5, we examine symmetric matrices. In Sec. 2.6, we 

introduce the Kronecker product. In Sec. 2.7, we present singular value decomposition (SVD), and in 

Sec. 2.8, Schmidt decomposition. 

2.1 Types of Matrices 

We refer to the row matrix as (𝑎1 𝑎2 ⋯ 𝑎𝑛).  

We refer to the column matrix as (

𝑎1
𝑎2
⋮
𝑎𝑛

) . 

We refer to the zero matrix as (
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

) . 

We refer to the diagonal matrix as (
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆2

) . 

We refer to the identity matrix (also denoted as I) as (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

) . 

2.2 Basic Matrix Operations 

It is only possible to add matrices of the same size, i.e. two matrices A and B can only be added if 
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𝐴 = (𝑎𝑖𝑗)𝑚×𝑛 and 𝐵 = (𝑏𝑖𝑗)𝑚×𝑛. Then, we have 𝐴 + 𝐵 = 𝐶 = (𝑐𝑖𝑗)𝑚×𝑛 where  

𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 .                                                                   (1) 

Matrix addition satisfies the following properties: 

𝐴 + 𝐵 = 𝐵 + 𝐴                                                                 (2) 

𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶                                                      (3) 

When performing matrix multiplication, the first matrix's columns should match the number of 

rows in the second matrix. For 𝐴 = (𝑎𝑖𝑗)𝑚×𝑠 and 𝐵 = (𝑏𝑖𝑗)𝑠×𝑛, we have 𝐴𝐵 = 𝐶 = (𝑐𝑖𝑗)𝑠×𝑠 where 

𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 +⋯+ 𝑎𝑖𝑠𝑏𝑠𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑠
𝑘=1 .                               (4) 

Matrix multiplication satisfies the following properties: 

(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶)                                                            (5) 

𝜆(𝐴𝐵) = (𝜆𝐴)𝐵                                                              (6) 

𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶, (𝐵 + 𝐶)𝐴 = 𝐵𝐴 + 𝐶𝐴                                       (7) 

𝐸𝑚𝐴𝑚×𝑛 = 𝐴𝑚×𝑛𝐸𝑛 = 𝐴𝑚×𝑛                                               (8) 

𝜆𝐸 is a scalar matrix                                                        (9) 

Matrix exponentiation can only be applied to square matrices. For = (𝑎𝑖𝑗)𝑠×𝑠 , we have 

𝐴𝑘 = 𝐴𝐴…𝐴⏟    
𝑘

                                                               (10) 

and 

𝐴𝑘𝐴𝑙 = 𝐴𝑘+𝑙 , (𝐴𝑘)𝑙 = 𝐴𝑘𝑙 .                                               (11) 

The following properties also hold when 𝐴𝐵 = 𝐵𝐴: 

(𝐴𝐵)𝑘 = 𝐴𝑘𝐵𝑘                                                        (12) 

(𝐴 + 𝐵)2 = 𝐴2 + 2𝐴𝐵 + 𝐵2                                              (13) 

(𝐴 + 𝐵)(𝐴 − 𝐵) = 𝐴2 − 𝐵2                                              (14) 

2.3 Matrix Transposition 

Matrix transposition consists of switching the rows and columns of a matrix and is denoted by T. 

For example, for the matrix 𝐴 = (
1 4
2 5
3 6

) , 𝐴𝑇 = (
1 2 3
4 5 6

) . 

Matrix transposition satisfies the following properties: 

(𝐴𝑇)𝑇 = 𝐴                                                            (15) 

(𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇                                                   (16) 

(𝜆𝐴)𝑇 = 𝜆𝐴𝑇                                                           (17) 

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇                                                       (18) 
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2.4 Unitary Matrices 

We denote 𝑈  as the unitary matrix. The unitary matrix satisfies 𝑈 ∙ 𝑈† = 1𝑛 , where 𝑈† =
(𝑈∗)𝑇 and 𝑈∗ denotes the complex conjugate matrix of 𝑈. 

2.5 Symmetric Matrices 

A square matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is said to be symmetric if 𝐴 = 𝐴𝑇, i.e. 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for i,j = 1, 2, ... n. 

On the other hand, 𝐴 is said to be asymmetric/antisymmetric/skew symmetric if 𝐴 = −𝐴𝑇. In this 

case, all numbers on the diagonal must be 0. 

A Hermitian matrix is a square matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 such that 𝑎𝑖𝑗 = 𝑎𝑗𝑖
∗ for any i,j. 

Here is an interesting problem using symmetric matrices: 

Given the row matrix 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
𝑇 satisfying 𝑋𝑇𝑋 = 1, and the identity matrix of size n, 

𝐸, if we define the matrix 𝐻 = 𝐸 − 2𝑋𝑋𝑇, prove that 𝐻 is symmetric and that 𝐻𝐻𝑇 = 𝐸. 

The proof goes as follows: 

𝐻𝑇 = (𝐸 − 2𝑋𝑋𝑇)𝑇 = 𝐸𝑇 + (−2𝑋𝑋𝑇)𝑇 = 𝐸 − 2(𝑋𝑋𝑇)𝑇 

= 𝐸 − 2(𝑋𝑇)𝑇𝑋𝑇 = 𝐸 − 2𝑋𝑋𝑇 = 𝐻 

𝐻𝐻𝑇 = 𝐻2 = (𝐸 − 2𝑋𝑋𝑇)2 = 𝐸2 − 4𝑋𝑋𝑇 + (−2𝑋𝑋𝑇)2 

= 𝐸 − 4𝑋𝑋𝑇 + 4𝑋𝑋𝑇𝑋𝑋𝑇 = 𝐸 − 4𝑋𝑋𝑇 + 4𝑋(𝑋𝑇𝑋)𝑋𝑇 

= 𝐸 − 4𝑋𝑋𝑇 + 4𝑋𝑋𝑇 = 𝐸. 

2.6 Kronecker Product 

The Kronecker product, sometimes referred to as the direct product or tensor product, is a method 

for multiplying matrices that don't meet the criteria for standard matrix multiplication. 

Given matrix A of size 𝑛 ×  𝑝 and matrix B of size 𝑚 ×  𝑞 , their resultant matrix will have 

dimensions 𝑚𝑛 ×  𝑝𝑞 and is computed as follows: 

                                            (19) 

The Kronecker product satisfies the following properties : 

𝐴 ⨂ (𝐵 ⨂ 𝐶) = (𝐴 ⨂ 𝐵) ⨂ 𝐶                                                  (20) 

𝐴 ⨂ (𝐵 + 𝐶) = (𝐴 ⨂ 𝐵) + (𝐴 ⨂ 𝐶)                                            (21) 

𝑎 ⨂ 𝐴 = 𝐴 ⨂ 𝑎 = 𝑎𝐴,where 𝑎 is a scalar                                       (22) 

(𝐴 ⨂ 𝐵)(𝐶 ⨂ 𝐷) = 𝐴𝐶 ⨂ 𝐵𝐷, for conforming matrices                              (23) 

2.7 Singular Value Decomposition (SVD)  

A decomposition of the matrix 𝑋 = 𝑈 (
𝐷 0
0 0

) ∙ 𝑉  is called the singular value decomposition 

(SVD) of 𝑋, where 𝐷 = diag(𝑑1, … , 𝑑𝑟), with 𝑑1 ≥ ⋯ ≥ 𝑑𝑟 > 0 as the singular values of 𝑋. The 

singular values are uniquely determined by 𝑋. This means that, given a matrix 𝑋, it can be written as 
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𝑋 = 𝑈 (
𝐷 0
0 0

) ∙ 𝑉 = 𝑈1 (
𝐷1 0
0 0

) ∙ 𝑉1  with 𝐷 = diag(𝑑1, … , 𝑑𝑟)  and 𝐷1 = diag(𝑓1, … , 𝑓𝑟) , where 

𝑑1 ≥ ⋯ ≥ 𝑑𝑟 > 0 and 𝑓1 ≥ ⋯ ≥ 𝑓𝑟 > 0, 𝑑𝑖 = 𝑓𝑖 for 0 ≤ 𝑖 ≤ 𝑟. 

2.8 Schmidt Decomposition 

For a matrix 𝑀 = [|𝑎1>,|𝑎2>,…,|𝑎𝑛>]𝑚×𝑛 , where |𝑎1> ∈ 𝐶𝑚 , if ∑ 𝑐𝑗|𝑎𝑗> = 0, 𝑛
𝑗=0 𝑐𝑗 ∈ 𝐶, then 

𝑐𝑗 = 0 for all 𝑗, and |𝑎1>, |𝑎2>, …, |𝑎𝑛> are linearly independent, and this property determines the 

rank 𝑟 of a matrix. 

Every 2-tensor 𝑇 has a Schmidt decomposition, i.e. 

𝑇 = ∑ √𝑐𝑗  |𝑎𝑗>
𝑟
𝑗=1 ⨂ |𝑏𝑗>                                                     (24) 

where 𝑐𝑗 > 0, |𝑎𝑗>'s are orthonormal vectors and |𝑏𝑗>'s are orthonormal vectors. 

Using SVD and given <𝑏𝑗| = (|𝑏𝑗>)
† and <𝑏𝑗

∗| = (|𝑏𝑗>)
𝑇, we can write 

𝑇′ = 𝑈(
√𝑐1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ √𝑐𝑟

)𝑉 = 𝑈(∑√𝑐𝑗

𝑟

𝑗=1

|𝑗> <𝑗|)𝑉 

=∑√𝑐𝑗 |𝑎𝑗>

𝑟

𝑗=1

⨂ <𝑏𝑗
∗| =∑√𝑐𝑗 𝑈 |𝑗>

𝑟

𝑗=1

<𝑗| 𝑉. 

3. Results 

Within this section, we present the primary findings of our study. In Sec. 3.1, we apply the 

Kronecker product to 2-tensors in 𝐶2 ⨂ 𝐶2. Then, in Sec. 3.2, we generalize the conclusion to higher-

dimension tensors. In Sec. 3.3, we show that a Schmidt decomposition for a 3-tensor is impossible to 

achieve. In Sec. 3.4, we follow with a generalization of the question in 3.1 to higher-dimension tensors. 

In. Sec. 3.5, we discussed the two groups, 𝐺𝐿(2, 2, 2)  and 𝑈(4) × 𝑈(2) , illustrating how they 

transform distinct tensors.  

3.1 Applications of the Kronecker Product on 2-Tensors 

We can consider the following problem to better understand the use of the Kronecker product: 

We construct two 2-tensors,  

𝑇1 = 𝑎 |0> ⨂ |0>+  𝑏 |1> ⨂ |1>, and 

𝑇2 = 𝑐 |0> ⨂ |0>+  𝑑 |1> ⨂ |1>, 

where |0> = (
1
0
), |1> = (

0
1
) and 𝑎, 𝑏, 𝑐, 𝑑 are complex numbers.  

Can we find an element 𝑈 in 𝑈(2) × 𝑈(2) such that 𝑈𝑇1 = 𝑇2, where 𝑈(2) is the 2 × 2 unitary 

group? If yes, we say that 𝑇1 and 𝑇2 are equivalent under local unitary (LU) group. 

Let 𝑈 = 𝑉 ⨂ 𝑊, where 𝑉 and 𝑊 are elements of 𝑈(2). 
We can look at the norm of each side of the equation 

𝑈𝑇1 = 𝑇2.                                                                     (25) 

‖𝑅𝐻𝑆‖  = √|𝑐|2 + |𝑑|2 
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This gives us the equation  

|𝑎|2 + |𝑏|2 = |𝑐|2 + |𝑑|2.                                                     (26) 

It is possible to prove a bijection (an isomorphism between two sets) between elements of the 

following two sets: 

𝜙 = ∑∑𝑎𝑖𝑗|𝑖> ⨂|𝑗>𝜖 𝐶𝑚 ⨂ 𝐶𝑛
𝑛−1

𝑗=0

𝑚−1

𝑖=0

 

𝜓 = ∑∑𝑎𝑖𝑗|𝑖> ⨂ <𝑗| 𝜖 𝐶𝑚×𝑛.

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 

Using the norm obtained for the RHS, we have that 𝑇2 corresponds to (
𝑐 0
0 𝑑

). 

Developing on Equation (25) using the previously determined conditions, we obtain 

𝑎𝑉|0> ⨂ 𝑊|0>+ 𝑏𝑉|1> ⨂ 𝑊|1>, which corresponds to the matrix 

 

 

 

. 

From this, and using SVD, we observe that 

LHS = 𝑉 (
𝑎 0
0 𝑏

)𝑊𝑇 

= 𝑉 (
|𝑎|𝑒𝑖𝛼 0

0 |𝑏|𝑒𝑖𝛽
)𝑊𝑇 

= 𝑉 (𝑒
𝑖𝛼 0
0 𝑒𝑖𝛽

) (
|𝑎| 0
0 |𝑏|

)𝑊𝑇 

RHS = (
𝑐 0
0 𝑑

) 

= (
|𝑐|𝑒𝑖𝛾 0

0 |𝑑|𝑒𝑖𝛿
) 

= (𝑒
𝑖𝛾 0
0 𝑒𝑖𝛿

) (
|𝑐| 0
0 |𝑑|

) 12. 

Hence, the necessary condition for the existence of a matrix 𝑈 satisfying the problem is that |𝑎| =
|𝑐| and |𝑏| = |𝑑| or |𝑎| = |𝑑| and |𝑏| = |𝑐|. 
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If |𝑎| = |𝑐| and |𝑏| = |𝑑|, we can write 

𝑇1 = |𝑎|𝑒
𝑖𝛼 |0> ⨂ |0>+ |𝑏|𝑒𝑖𝛽 |1> ⨂ |1>, and 

𝑇2 = |𝑎|𝑒
𝑖𝛾 |0> ⨂ |0>+ |𝑏|𝑒𝑖𝛿  |1> ⨂ |1>. 

The unitary matrix 𝑈 which can convert 𝑇1 to 𝑇2 can be written as 

𝑈 = 𝑉 ⨂ 𝑊 = (𝑒
𝑖(𝛾−𝛼) 0
0 𝑒𝑖(𝛿−𝛽)

)⨂ 𝐼2.                                          (27) 

Similarly, if |𝑎| = |𝑑|  and |𝑏| = |𝑐| , the unitary matrix 𝑈  which can convert 𝑇1  to 𝑇2  can be 

written as 

𝑈 = 𝑉 ⨂ 𝑊 = ( 0 𝑒𝑖(𝛿−𝛼)

𝑒𝑖(𝛾−𝛽) 0
)⨂ (

0 1
1 0

) .                                  (28) 

To conclude, we have presented the conditions by which two 2-tensors 𝑇1  and 𝑇2  are LU 

equivalent. 

3.2 Applications of the Kronecker Product on 2-Tensors with Higher Dimensions 

It is possible to generalize the question in Sec. 3.1 into finding a unitary matrix 𝑈 in 𝑈(𝑑) × 𝑈(𝑑), 
where 𝑈(𝑑) is the 𝑑 × 𝑑 unitary group, satisfying the condition that 𝑈𝑇1 = 𝑇2, where 

, and 

. 

Following the reasoning for the 𝑈(2) × 𝑈(2), we can conclude that  

{|𝑎0|, … , |𝑎𝑑−1|} ↔ {|𝑏0|, … , |𝑏𝑑−1|}. 

We can rewrite 𝑇1 and 𝑇2 as such: 

𝑇1 = |𝑎0|𝑒
𝑖𝛼0  |0> ⨂ |0>+⋯+ |𝑎𝑑−1|𝑒

𝑖𝛼𝑑−1  |𝑑 − 1> ⨂ |𝑑 − 1>, and 

𝑇2 = |𝑏0|𝑒
𝑖𝛽0  |0> ⨂ |0>+⋯+ |𝑏𝑑−1|𝑒

𝑖𝛽𝑑−1  |𝑑 − 1> ⨂ |𝑑 − 1>. 

If we consider the case where |𝑎𝑖| = |𝑏𝑖| for 0 ≤ 𝑖 ≤ 𝑑 − 1, we can write 𝑈 as 

𝑈 = 𝑉 ⨂ 𝑊 = (
𝑒𝑖(𝛽0−𝛼0) ⋯ 0

⋮ ⋮ ⋮
0 ⋯ 𝑒𝑖(𝛽𝑑−1−𝛼𝑑−1)

)⨂ 𝐼𝑑 .                           (29) 

If we consider the case where |𝑎𝑖| = |𝑏𝜎(𝑖)| for 0 ≤ 𝑖 ≤ 𝑑 − 1, we define 𝑃 such that 

(𝑃 ⨂ 𝑃)𝑇1 = 𝑎0|𝜎(0)> ⨂ |𝜎(0)> +…+ 𝑎𝑑−1|𝜎(𝑑 − 1)> ⨂ |𝜎(𝑑 − 1)>. 

We want to find 𝑈 such that 𝑈(𝑃 ⨂ 𝑃)𝑇1 = 𝑇2. 

Then, we can write 𝑈 as 

𝑈 = 𝑉 ⨂ 𝑊 = (
𝑒𝑖(𝛽𝜎(0)−𝛼0) ⋯ 0

⋮ ⋮ ⋮

0 ⋯ 𝑒𝑖(𝛽𝜎(𝑑−1)−𝛼𝑑−1)
)⨂ 𝐼𝑑  .                      (30) 

We denote as 𝑟 and 𝑠 the Schmidt ranks of the 2-tensors 𝑇1 and 𝑇2, respectively. 

We can write 
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𝑇1 = (𝑈1 ⨂ 𝑉1) ∑√𝑐𝑗

𝑟

𝑗=1

|𝑗> ⨂ |𝑗> 

𝑇2 = (𝑈2 ⨂ 𝑉2) ∑√𝑑𝑖

𝑠

𝑖=1

|𝑖> ⨂ |𝑖>  

with 𝑐1 ≥ ⋯ ≥ 𝑐𝑟 > 0 and 𝑑1 ≥ ⋯ ≥ 𝑑𝑠 > 0. 

It then suffices to compare the Schmidt coefficients of the two tensors. 

Let  

|𝑊> ≠ (𝐴 ⨂ 𝐵 ⨂ 𝐶)(|0,0,0> + |1,1,1>)                                          (31) 

where |0,0,0> + |1,1,1> = |GHZ>. 

If |𝛹> ∈ 𝐶2 ⨂ 𝐶2 ⨂ 𝐶2, then ∃ A ⨂ 𝐵 ⨂ 𝐶 ∈ 𝐺𝐿(2,2,2) = 𝐺𝐿(2) × 𝐺𝐿(2) × 𝐺𝐿(2)  

such that (𝐴 ⨂ 𝐵 ⨂ 𝐶) |𝛹> =

{
 
 
 

 
 
 

|0,0,0>
1

√2
(|0,0>+ |1,1>)|0>

|𝑊>

|𝐺𝐻𝑍>
1

√2
|0,0,0> + |1,0,1>

1

√2
|0>(|0,0> + |1,1>)

. 

Here, 𝐺𝐿(𝑑) is the set of all 𝑑 × 𝑑 invertible matrices, 𝑈(𝑑) is the set of all 𝑑 × 𝑑 unitary matrices, 

so 𝑈(𝑑) is a proper subset of 𝐺𝐿(𝑑). 
We can see that   

. 

Furthermore, we know that 𝑈(𝑑) ⊂ 𝐺𝐿(𝑑). Let 𝑋 = (𝐷𝑈1
†⨂ 𝑉1

†), 𝑌 = 𝑈2𝐹 ⨂ 𝑉2 , where 𝐷 =

𝑑𝑖𝑎𝑔(√𝑐1
−1, . . . , √𝑐𝑟

−1), 𝐹 = 𝑑𝑖𝑎𝑔(√𝑑1, . . . , √𝑑𝑟). Then, 

𝑋𝑇1 =∑|𝑗>

𝑟

𝑗=1

⨂ |𝑗> 

⇒ 𝑌𝑋𝑇1 = (𝑈2 ⨂ 𝑉2)∑√𝑑𝑗  |𝑗>

𝑟

𝑗=1

⨂ |𝑗> = 𝑇2. 

Knowing 𝑌𝑋 = 𝑈2𝐹𝐷𝑈1
†⨂ 𝑉2𝑉1

† ∈ 𝐺𝐿(𝑟) × 𝐺𝐿(𝑟), we have 

𝑇1 = 0.6|0,0>+ 0.8|1,1> 

and 𝑇2 =
1

√2
(
|0>+|1>

√2
) |0>+

1

√2
(
|2>+|3>

√2
) |1>. 

Thus, we can rewrite a tensor in 𝐺𝐿(2,2,2) in the form 𝑈(4) × 𝑈(2). 

3.3 Schmidt Decomposition for 3-Tensors 

If |𝜓> ∈ 𝐶𝑚 ⨂ 𝐶𝑛 , then |𝜓> ∈ span{|𝑖> ⨂ |𝑗>}𝑗=0,   …,   𝑛−1
𝑖=0,   …,   𝑚−1

, which means that we can write 

|𝜓> =∑ 𝑐𝑖𝑗𝑖,𝑗 |𝑖> ⨂ |𝑗>, where 𝑐𝑖𝑗 is a complex number. 
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For a 3-tensor |𝜓> ∈ 𝐶𝑚 ⨂ 𝐶𝑛 ⨂ 𝐶𝑝, we can then write  

|𝜓> ∈ span{|𝑖> ⨂ |𝑗> ⨂ |𝑘>}𝑗 = 0,   …,   𝑛−1
𝑘 = 0,   …,   𝑝−1

𝑖 = 0,   …,   𝑚−1 .                               (32) 

For example, we consider the 3-tensor  

|𝑊> = |0> ⨂ |0> ⨂ |1> + |0> ⨂ |1> ⨂ |0> + |1> ⨂ |0> ⨂ |0> ∈ 𝐶2 ⨂ 𝐶2⨂ 𝐶2 

= |0> ⨂ (|0> ⨂ |1> + |1> ⨂ |0>) + |1> ⨂ (|0> ⨂ |0>) 

= √2 |0> ⨂
|0> ⨂ |1> + |1> ⨂ |0>

√2
+ |1> ⨂ (|0> ⨂ |0>).                              (33) 

We claim that the decomposition in (33) is the Schmidt decomposition for |W> taken as a 2-tensor 

in the bipartite space being the tensor product of 𝐶2 and 𝐶2⨂ 𝐶2. We compute that 

(<0| ⨂ <0|) (
|0> ⨂ |1> + |1> ⨂ |0>

√2
)                                                    (34) 

= (<0| ⨂ <0|)
|0> ⨂ |1>

√2
+ (<0|⨂ <0|)

|1> ⨂ |0>

√2
 

= 0 + 0 = 0. 

Furthermore, we show that 

(
<0| ⨂ <1| + <1| ⨂ <0|

√2
)(
|0> ⨂ |1> + |1> ⨂ |0>

√2
) 

=
1

2
(<0,1| ∙ |0,1> + <0,1| ∙ |1,0> + <1,0| ∙ |0,1> + <1,0| ∙ |1,0>) 

=
1

2
(1 + 1) = 1 

and (<0| ⨂ <0|)(|0> ⨂ |0>) = 1. 

Hence, the two vectors |0> ⨂ |0> and 
|0> ⨂ |1> + |1> ⨂ |0>

√2
 are orthonormal. Therefore, we have 

proven the claim below (33). 

On the other hand, we can write |𝑊> in a way similar to the Schmidt decomposition for 2-tensors. 

For example, we assume the decomposition 

|𝑊> = ∑ √𝑑𝑗 |𝑎𝑗, 𝑏𝑗, 𝑐𝑗>
𝑟
𝑗=1 ,                                                   (35) 

where |𝑎𝑗>’s are orthonormal vectors in 𝐶2,  |𝑏𝑗>’s are orthonormal vectors in 𝐶2, and |𝑐𝑗>’s are 

orthonormal vectors in 𝐶2. In the following steps, we show that (35) does not hold. Since |𝑎1>, 

… , |𝑎𝑟> ∈ 𝐶2, we have 𝑟 ≤ 2, giving only two cases for |𝑊>, namely r = 1 and r = 2. 

If 𝑟 = 1, then (35) implies that |𝑊> =√𝑑 |𝑎, 𝑏, 𝑐>. Let |𝑎> = (
𝑎0
𝑎1
), |𝑏> = (

𝑏0
𝑏1
), and |𝑐> = (

𝑐0
𝑐1
). 

Then, from (35), we have 

√𝑑 (
𝑎0
𝑎1
)⨂(

𝑏0
𝑏1
)⨂(

𝑐0
𝑐1
) = |0, 0, 1> + |0, 1, 0> + |0, 0, 1> 
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. 

Looking at the 2nd and 6th entries, we can determine that 𝑎1 = 0. Then, it is impossible for the 5th 

entry to equal 1. We have excluded the case r = 1 for (35). 

It remains to consider the case r = 2 for (35). For this purpose, we firstly show the following fact. 

Let 𝑇 = |0, 1> + |1, 0> + 𝑥 |0, 0> , where 𝑥 𝜖 𝐶 and |𝑦> be a non-zero matrix. We want to show 

that (<𝑦| ⨂ 1) 𝑇 ≠ 0. 

(<𝑦| ⨂ 1) 𝑇 

= (<𝑦| ⨂ 1) [𝑎1 |𝛼1> ⨂ |𝛽1> + 𝑎2 |𝛼2> ⨂ |𝛽2>] 

= 𝑎1 <𝑦 |𝛼1> ∙ |𝛽1> + 𝑎2 <𝑦 |𝛼2> ∙ |𝛽2>.                                     (36) 

We rewrite 𝑎1 <𝑦 |𝛼1> as 𝑥1 and 𝑎2 <𝑦 |𝛼2> as 𝑥2. So for (<𝑦| ⨂ 1) 𝑇 to equal 0, 𝑥1 = 𝑥2 = 0, 

which is a contradiction.  

Now we return to the case r = 2 for (35). We have 

.                                     (37) 

We consider the case where |𝑎1> = 𝑥 |𝑎2>. This means that ∃ |𝑎3> ∈ 𝐶2/{0} s.t. |𝑎3> ⊥ |𝑎2> . 

Then, we obtain 

(<𝑎3| ⨂ 12 ⨂ 12)(|0, 0, 1> + |0, 1, 0> + |0, 0, 1>)                             (38) 

= <𝑎3|0> ∙ |0, 1> + <𝑎3|0> ∙ |1, 0> + <𝑎3|1> ∙ |0, 0> 

= 0 

by multiplying by (<𝑎3| ⨂ 12 ⨂ 12) on both sides of (37). Therefore, |𝑎1> ≠ 𝑥 |𝑎2>. We obtain 

that ∃ |𝑥> ∈ 𝐶2/{0} s.t. |𝑥> ⊥ |𝑎1>. Multiplying by (<𝑥| ⨂ 12 ⨂ 12) on both sides of (35) gives 

 

and from (36), this results in a contradiction. Therefore, a Schmidt decomposition of the 3-tensor 

|𝑊> is impossible to achieve. One can similarly show that the Schmidt decomposition for a generic 

3-tensor does not exist. 

3.4 Generalization to Higher Dimensions 

If 𝜓 ∈ 𝐶2 ⨂ 𝐶3 ⨂ 𝐶𝑁−1, then we can write 𝜓 = ∑ ∑ ∑ 𝑐𝑗𝑘𝑙  |𝑖>
𝑁−1
𝑙=0

2
𝑘=0

1
𝑗=0 ⨂ |𝑘> ⨂ |𝑙>. We want 

to determine whether ∃ 𝑈 ∈ 𝐺𝐿(2) × 𝐺𝐿(3) × 𝐺𝐿(5) s.t. 𝑈 ∙ 𝜓 = |0, 2, 4>+ |0, 0, 1>+ |0, 1, 1>+
|1, 0, 2>+ |1, 1, 3>.  
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Let 𝑇1 = ∑ √𝑑𝑗  |𝑗> ⨂ |𝑗>𝑟
𝑗=0 . Then, there exists 𝑈 ⨂ 𝑟𝑖 ⊆ 𝐺𝐿(𝑚)  such that (𝑈 ⨂ 𝑉) 𝑇1 =

∑ |𝑗> ⨂ |𝑗>𝑟
𝑗=0 . Suppose 𝑇2 ⊂ 𝐶

𝑚  ⨂𝐶𝑛. There exists a matrix 𝑋 ⊂ 𝑈(𝑚)⨂𝐺𝐿(𝑛) such that 𝑋𝑇2 =

∑ |𝑗> ⨂ |𝑗>𝑟
𝑗=0 , where 𝑟 is the Schmidt rank of 𝑇2.  

Let 𝑋 = 𝑈 ⨂ 𝑉. Then, we can write 𝑋(|0, 2, 4>+ |0, 0, 1>+ |0, 1, 1>+ |1, 0, 2>+ |1, 1, 3>) =
|0, 2, 4>+ |1, 2, 1>+ |0, 0, 1> + |0, 1, 1>+ |1, 0, 2>+ |1, 1, 3>. 

We have that 

𝑋1𝑇2 = ∑ |𝑗>𝑟
𝑗=1 ⨂ |𝑗> = 𝑋1𝑇2′ 

⟹ 𝑋1𝑇2 =  𝑋1𝑇2
′

⟹ 𝑇2 = 𝑋1
−1𝑋1𝑇2

′.

                                              (39) 

Let 𝑀1 = |0,2><4| + |0,0><0| + |0,1><1| + |1,0><2| + |1,1><3| 

=

[
 
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0]

 
 
 
 
 

 

and 𝑀2 = |0,2><4| + |1,2><1| + |0,0><0| + |0,1><1| + |1,0><2| + |1,1><2| 

=

[
 
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 0
0 1 0 1 0]

 
 
 
 
 

 . 

Following the previous calculations, we can see that rank(𝑀1) = 5 and rank(𝑀2) = 5. 

3.5 Properties of 𝑮𝑳(𝟐, 𝟐, 𝟐) and 𝑼(𝟒) × 𝑼(𝟐) 

In Sec. 3.2, we have mentioned the two following groups: 𝐺𝐿(2,2,2) and 𝑈(4) × 𝑈(2).  

In 𝐺𝐿(2,2,2), |0,0,0> cannot be transformed into 
|0,0,0>+|1,1,0>

√2
. However, we know that if 𝑋 ∈

𝑈(4), then 𝑋 ∙ 𝑋† = 14. Then, if 𝑋|0,0> =
|0,0>+|1,1>

√2
, then (𝑋⨂12)|0,0,0> =

|0,0,0>+|1,1,0>

√2
. 

On the other hand, in 𝑈(4) × 𝑈(2), 
|0,0,0>+|1,1,0>

√2
 cannot be rewritten as 0.6|0,0>+ 0.8|1,1>. 

However, 𝑋 ∈ 𝐺𝐿(2,2,2) such that 𝑋 = 12⨂12⨂(
0.6√2 0

0 0.8√2
) satisfies the condition. 

4. Conclusion   

We have established two types of equivalences for 2-tensors by applying local unitary groups and 

general linear groups. This equivalence is further extended to include certain 3-tensors. However, due 

to the lack of Schmidt decomposition in 3-tensors (or more generally, n-tensors when n > 2), this 

extension becomes significantly complex. A key question arising from this study is to explore how 

the number of parameters in 3-tensors can be reduced under these two established equivalences. We 

also attempt to expand the discussion on this issue to higher dimensions, discussing the distinct 

characteristics displayed by specific groups in this process. Furthermore, it remains to be determined 
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whether the unitary groups spanning two systems can eliminate more parameters than the 

multiplication of two general linear groups. 
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