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Abstract: Nowadays training a well-functioning deep learning AI model requires a large 

amount of data, while in the field of medicine many scenarios lack training data due to 

privacy issues and legal reasons. In this essay, we propose to use ControlNet, a novel 

approach that leverages stable diffusion models and conditional control to produce realistic 

and diverse medical images. ControlNet allows us to specify extra conditions that the 

diffusion model should follow, such as edge maps, depth maps, segmentation masks, or CLIP 

image embeddings. These conditions can help us to preserve the structure, shape, and 

semantics of the target organs or tissues, as well as to manipulate the appearance, style, and 

context of the generated images. Specifically, we will use ControlNet to generate X-ray of a 

patient with pulmonary nodules and show the improvement.  

1. Introduction 

Recently AI has become particularly powerful and the application in other fields such as 

engineering [1], cybersecurity [2], motion analysis [3],  etc. has made significant achievements. 

However, in the medical field, although AI shows great promise in improving diagnostic accuracy 

and efficiency [4], a key challenge facing the field is to obtain high-quality annotated datasets for 

training. In this paper, we propose an approach to address this problem by generating synthetic 

medical images using the neural network structure [5]. 

ControlNet enables fine-tuning diffusion models with additional conditions, without causing any 

distortion to the original model. By leveraging this technology, we can generate a diverse range of 

synthetic medical images that closely resemble real-world data. These images can serve as a valuable 

resource for training AI models, thereby overcoming the limitations of traditional datasets. 

In general, the use of ControlNet for generating synthetic medical images opens up new avenues 

in the field of medical imaging. It holds the potential to revolutionize the way we train AI models, 

ultimately leading to more accurate and efficient diagnostic tools. 

2. Literature Review 

To generate synthetic medical images, methods like GAN [6] and VAE [7, 8] have been adopted 

[9, 10, 11, 12]. However, they face two main problems, the instability of training and lack of output 
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diversity [13]. Diffusion models [14, 15, 16] effectively solve these problems. However, in the field 

of medicine it lacks structural control to condition the image generation solely by text prompt. 

In a recent study, Zhang et al. proposed ControlNet [5] as a modulation architecture, adding spatial 

conditioning controls to large, pre-trained text-to-image diffusion models [14]. The neural 

architecture is connected with “zero convolutions” [5] that progressively grow the parameters from 

zero and ensure that no harmful noise could affect the fine-tuning. The researchers tested various 

conditioning controls, such as edges, depth, segmentation, human pose, etc., with Stable Diffusion 

[10], using single or multiple conditions, with or without prompts. It is shown that the training of 

ControlNet is robust with both small (<50k) and large (>1m) datasets. 

ControlNet has been used in various applications such as generating artistic images, medical 

images. In the study, it was used to generate medical images with greater precision and control. The 

researchers showed that ControlNet can be used to generate high-quality medical images with greater 

precision and control than traditional generative models. 

3. Method 

ControlNet is a neural network architecture which controls diffusion models by adding extra 

conditions. It can be used to generate images with greater precision and control by allowing users to 

add conditions such as canny edges and human poses. 

The architecture of ControlNet consists of two main components: a diffusion model and a control 

network. The diffusion model is a pre-trained generative model that generates images from noise. 

The control network is a neural network that takes in an input image and a prompt and produces a 

synthesized image that matches the prompt and follows the constraints imposed by the input image. 

The control network is trained using a combination of adversarial loss, perceptual loss, and feature 

matching loss. The adversarial loss ensures that the synthesized image is realistic, while the 

perceptual loss ensures that the synthesized image matches the prompt. The feature matching loss 

ensures that the synthesized image follows the constraints imposed by the input image. 

4. Results 

 

Figure 1: The ground truth, generated image and condition 

Finally, the graphs we generated using ControlNet are comparable to the real graphs, the first 

column in Figure 1 are the ground truth and the second column are the images we generated using 

ControlNet. The PSNR of the generated image is 19.6, which indicates that the fidelity of the image 

generation process is sufficient for the initial training phase of the image recognition model in the 

medical domain. Moreover, the SSIM value of our images reaches 0.65, which indicates that the basic 
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structural features essential for medical diagnosis are well preserved in the generated images. 

Furthermore, Figure 2 shows qualitative evaluation of the model. Specifically, image (a) is the initial 

condition as the input to ControlNet, and images (b)-(l) are the validation images across different 

training steps. The results show that as the number of training steps increase, the quality of the 

generated images increase as well.  

Our method shows significant improvement in the speed and scalability of image generation when 

compared to traditional dataset generation methods. The results show that the generated dataset can 

greatly help in training machine learning models, especially in the case of limited variety of medical 

images. While the achieved PSNR and SSIM values are promising, there is still room for 

improvement. Future research will focus on optimizing the control network architecture to enhance 

these metrics. 

 

Figure 2: Validation results during training 

5. Conclusion 

In this essay, we have explored the potential of ControlNet in revolutionizing medical image 

generation. Our findings suggest that ControlNet can generate images with considerable precision 

and control, effectively mirroring real-world medical data. The proposed method not only improves 

the quality and diversity of synthetic medical images but also offers a scalable solution to rapidly 

expand training datasets for diagnostic AI. 

Looking forward, optimizing ControlNet and exploring its full potential in medical imaging will 

be an essential step. As the technology matures, it could significantly impact various aspects of 

healthcare, from diagnostic accuracy to treatment planning and medical research. However, it's also 

critical to address any ethical and technical challenges associated with synthetic data to ensure that 
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the benefits of such advancements are realized responsibly and equitably.  
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