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Abstract: The Pretrained-Language Model (PLM) has achieved dominance in the field of 

Natural Language Processing (NLP), and prompt learning further enhances its impact by 

aligning the pre-training tasks of the language model with the downstream tasks. However, 

comparing with traditional fine-tune, prompt learning has some disadvantages such as poor 

absolute accuracy, low training efficiency and poor robustness, especially in the case of 

small parameters of the language model itself or insufficient training data. A large number 

of studies have shown that the main defect of Prompt learning (PL) at the present stage is 

that the quality of Prompt itself plays an important role in the performance of the model, 

and the existing initialization method of prompt is often not optimal. Therefore, we propose 

Two-Stage Prompt Pre-Train (TSPPT): using the special pre-training tasks, obtained by 

constructing or reforming raw texts and downstream tasks, to pre-train two sub-prompt, 

Task-oriented sub-Prompt (TSP) and Universal Sub-Prompt (USP), in two advanced stages 

respectively. By concatenating USP and TSP as the prompt initialization for language 

model to prompt-tuning on downstream tasks, TSPPT promotes overall performance, such 

as robustness, accuracy, and generalization. Experiments have shown that TSPPT can 

achieve or even exceed the performance of traditional fine-tuning while retaining the 

advantage freezing language model parameters and tuning few parameters only. 

1. Introduction 

In 2017, Google released Transformer [1] based on self-attention mechanism, which 

significantly improves the modelling ability of natural language, and various pre-trained language 

models (PLM) based on its framework emerge in an endless stream, such as BERT [2], T5[3], etc. 

However, because of the mismatch between the traditional fine-tuning process and the tasks of the 

pre-training process, the PLMs have to accommodate to downstream tasks, resulting in catastrophic 

forgetting of PLMs. At the same time, the increasing number of parameters of PLMs makes the 

traditional fine-tuning cost unacceptable. Based on the above shortcomings, prompt learning began 

to be applied in the field of NLP. By transforming the format of downstream tasks to the type of 

tasks used in the language model pre-training stage, prompt tuning bridges the gap between pre-

training tasks and various downstream tasks and fully tap the potential of PLMs. 

Prompt learning roughly goes through two stages. First, PET [4] groundbreaking proposed to 
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transform downstream tasks into cloze-forms tasks, exactly the same form as tasks using for pre-

training masked language model, by manually constructing patterns and verbalizers in 2020, greatly 

improving the absolute accuracy of BERT models in various classification tasks. GPT-3 [5] 

provides guidance for language model predictions by adding task descriptions to the input, 

improving the model without changing the parameters of the model itself. We call this kind of 

prompt containing human semantic information discrete prompt (a.k.a. hard prompt). Another type 

of prompt is continuous prompt (a.k.a. soft prompts), which has its own parameters that can be 

tuned on the training data of downstream tasks. As shown in Figure 1 (c). The main method is 

prepending a sequence of continuous task-specific vectors, called Prompt, to the input, while 

keeping the LM parameters frozen, such as Prefix Tuning [6], Prompt Tuning [7].  

 

Figure 1: Paradigms of traditional fine-tuning, prompt fine-tuning, and prompt tuning. <M> 

represents the masked words which have same function in pre-training stage of masked language 

models. The verbalizer is an injective function that maps each label to real words. 

The quality of Prompt itself plays an important role in the performance of the model, and the 

existing initialization method of prompt is often not optimal. In order to find better Prompt, this 

paper proposes Two-Stage Prompt Pre-Training (TSPPT): using self-supervised tasks to pre-train 

two sub-prompts, named Universal Sub-Prompt (USP) and Task-oriented Sub-Prompt (TSP), in two 

advanced stages respectively. Then we concatenate the two sub-prompts as initialization of prompt 

for language model to process the downstream tasks. TSPPT further bridges the gap between the 

pre-training language models and downstream tasks. Not only improving robustness, also retains 

the feature of allowing the pre-trained language model to process various types of downstream tasks 

in parallel, as shown in Figure 2, retaining the efficient advantage of prompt learning. 

 

Figure 2: TSTPP retains the efficient advantage of prompt learning. 

In this paper, we conduct TSPPT on several datasets based on two PLMs, T5[3] and CPM-2 [8]. 

Experiments show that TSPPT not only improves few-shot learning performance, but also match or 

even surpass the traditional fine-tuning on some datasets. 
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2. Related Work 

Prompt- tuning: Most existing PLMs are pre-trained with language modelling objectives, yet the 

objectives of downstream tasks are quite different. To overcome the gap between pretraining and 

downstream tasks, prompt-tuning is introduced. In prompt-tuning, downstream tasks are also 

formalized as language modelling problems by inserting language prompts, and the results of 

language modelling can correspond to the solutions of downstream tasks. The early prompt learning 

is mainly based on the prompt contained human semantic information. However, searching [9] or 

generating [10] prompts in discrete spaces are usually sub-optimal. To overcome the shortcomings 

of discrete spaces, Prefix Tuning [6]; P-tuning [11]; explore to combine hard prompts and soft 

prompts. Different from hard prompts using concrete and discrete tokens, soft prompts are 

composed of several continuous learnable embeddings, and these embeddings are randomly 

initialized. To step forward, some works propose to only tune soft prompts and fix the entire PLM 

parameters. When models are large enough, this method can be comparable to full-model tuning. 

Prompt Initialization: The prompt initialization has a large impact on the final performance and 

existing prompt initialization strategies, based on the representations of hard prompt at the 

embedding layer or random initialization, are sub-optimal and less robustness. So, a new round of 

research has been launched on how to find better prompts. There are two main approaches to 

prompt initialization. The first method is to obtain the prompt initialization through transfer learning. 

Training a prompt from a set of source tasks as the prompt initialization of target tasks. SPoT [12] 

explores prompt transfer performance by conducting experiments on 186 NLP tasks and predicted 

the most suitable source tasks for a specific target task based on task similarity method, proving that 

prompt tuning can benefit from prompt transfer between each other. TPT [13] explored the effects 

of cross-task transfer and cross-model transfer at the same time and proposed a better approach to 

judge transfer performance based on overlapping rate of activated neurons. Another is prompt pre-

train. Inspired by pre-trained language model, this method pre-trains the soft prompt on self-

supervised tasks to get a better prompt and improve the final performance. PPT [14] pretrains Soft 

Prompt by constructing self-supervised tasks on large-scale unlabelled corpora, improving 

performance and accelerating the convergence of prompt tuning; ZeroPrompt [15] pre-trains a set of 

prompts by uniformly modelling different types of tasks, using a smaller set of validations from 

downstream tasks to pick out the best Prompt. 

3. Related Work 

In this section, we will introduce the overall framework of TSPPT and demonstrate the pre-

training tasks constructed by raw corpus or transformed by existing NLP tasks. 

3.1 Overview 

According to the current mainstream prompt learning method, we convert various types of 

downstream tasks into cloze format. Take PET [4] for example, given an input x and its label y, the 

corresponding mapping function f (x) converts x into a new sequence f (x) by inserting x to a 

manually constructed Pattern. f (x) contains not only hard prompts, but also mask tokens, which 

require PLMs to predict. At the same time, PET [4] design a Verbalizer, an injective function, to 

map label y with label words v (y). Then use f (x) and v (y) to represent the classification task as: 
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The Pattern and the Verbalizer are called PV-Pairs (PVPs, pattern-verbalizer Pairs), and θ 

represents all adjustable parameters, which are the whole language model parameters in PET [4].  

One step further, Prompt Tuning [7] fixed the parameters of the language model and 

contaminated a set of soft prompts to the beginning of the sequence. Then the model input can be 

expressed as [P ⊕ f(x)], where "[·⊕·]"represents the concatenation operation. By tuning P, Eq (1) 

is replaced by: 

    arg max log | ;
P

x

p M v y P f x P                                 (2) 

The Prompt in TSTPP consists of two sub-prompts. In the first pre-training stage, only the USP 

is tuned. Similar to Prompt Tuning [7], we can express as: 

    arg max log | ;
US

x
P

p M v y USP f x USP                           (3) 

After the first pre-training stage is completed, we get the USP initialization. Now we 

contaminate TSP before the USP. The second pre-training phase can be expressed as: 

    arg max log | ;
SP

x
T

p M v y TSP USP f x TSP                          (4) 

This paper focus on few-label classification tasks (the number of labels is 2 or 3) and use self-

supervised tasks to pre-train prompt to improve the performance of prompt learning. We elaborate 

the construction and transformation method of pre-training tasks used in the process of prompt pre-

training in 3.2 and 3.3 respectively. 

3.2 First Stage Prompt Pre-Train 

We design two methods to construct pre-train tasks in this stage. One is constructing self-

supervised few-label classification tasks on a large-scale unlabelled corpus, and another is 

transforming non-classification tasks to Few-Label classification tasks. 

3.2.1 Construct few-label classification task by raw corpus 

For common downstream tasks of NLP, such as natural language inference (NLI) and sentence 

similarity, the mostly input is sentence pairs.  

The mainly manual prompt used in NLI tasks is similar to "determine the content correlation 

between two sentences.", and we hope that the same entailment will be learned in the process of 

USP pretraining. 

Inspired by the Next Sentence Prediction (NSP) pre-training task in BERT [2], we use unlabelled 

corpus to construct few-label classification task. Take 3 labels classification task for example, two 

consecutive sentences in the same document are regarded as a new sample and labelled as 2-

coherent. Two discontinuous sentences in the same document are taken as a new sample and 

labelled 1-similar; Two sentences in different documents are considered as a new sample and 

labelled as 0-irrelevant. The corresponding PVPs are as follows: 
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fpre(x) = “S1<M>.S2” 

vpre(y) = [No, Maybe, Yes] 

S1 and S2 represent input sentence pairs. When the number of downstream tasks labels is 2, set 

vpre(y) = [No, Yes]. 

3.2.2 Transform non-classification tasks to few-label classification tasks 

We transform non-classification tasks, such as text summarization, machine translation etc., to 

few-label classification tasks by prompt learning method. Taking text summarization as an example, 

the original training sample is usually a text and a corresponding summary sentence. Take the text 

and its corresponding summary sentence as a new sample, labelled 2 - entailment; Paraphrasing the 

text then take the new text and its corresponding summary sentence as a new sample, labelled 1-

approximate; Taking the text and a random summary sentence as a new sample, labelled 0-

contradiction. The paraphrasing method is back translation [16], using a round-trip translation of the 

sentence into another language then back.  

The corresponding PVPs are as follows: 

fpre(x) = “T1?<M>S2” 

vpre(y) = [Wrong, Maybe, Anyhow] 

T1 and S2 represent text and its corresponding summary sentence respectively. We can set vpre(y) 

= [Wrong, Anyhow] when the number of downstream tasks labels is 2. 

3.3 Second Stage Prompt Pre-Train 

In this process, we use classification tasks to pretrain TSP to improve the skill for classification. 

Compared with the pre-train tasks used in first stage, which are constructed from raw text or 

transformed from other types of tasks, it is relatively easy to obtain pre-train task. So, the target of 

this stage is how to improve its classification ability. We use knowledge distillation, a classic 

method of improving accuracy, to answer this question. Specifically, we use a high-precision large 

model as the Teacher Model (TM) to get the soft labels and select the more reliable prediction 

results as the training sample of task TSP. The amount of information brought by training samples 

for TSP is greater than the traditional training method. Meanwhile, this method provides an 

opportunity to change the number of labels. Take SST-5 and AG’ NEWs for examples, we show 

that how to construct few-label tasks by fine-grained sentiment analysis tasks multi-label 

classification task. 

3.3.1 Reconstruct fine-grained classification tasks 

We used the TM to classify the sample into three categories (0-Negative, 1-Neutral & 2-Positive) 

and obtain a Soft-Label TM. Considering that the results of fine-grained task are poor, in order to 

improve the quality of soft labels, a Simulation-Soft-Label (Table 1) is assigned to each sample as 

follows: 

Table 1: Simulation-Soft-Label of fine-grained classification task 

Original Label Simulation-Soft-Label 

0-very negative 0.9 negative, 0.1 neutral, 0 positive 

1-negative 0.7 negative, 0.2 neutral, 0.1 positive 

2-neutral 0. 1 negative, 0.8 neutral, 0.1 positive 

3-positive 0.1 negative, 0.2 neutral, 0.7 positive 

4-very positive 0 negative, 0.1 neutral, 0.9 positive 
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Taking samples with better predictive results, the Training Soft Label is obtained by weighting 

the Soft-Label TM and Simulation-Soft-Label. This approach not only improves the label quality of 

the training samples, but also increases the class probability distribution entropy, correspondingly 

magnifying the information carried by the negative label, playing a role similar to the "temperature" 

parameters. 

The corresponding PVPs are as follows: 

fpre(x) = “T1. <M>.” 

vpre(y) = [Bad, Neutral, Good] 

T1 represent input sentence. We can set vpre(y) = [bad, good] when the number of downstream 

tasks labels is 2. 

3.3.2 Reconstruct Multi-Label classification task 

The labels of AG 'News task are 0-World, 1-Sports, 2-Business, and 3-Sci/Tec. We transform it 

to three labels task. For example, Remaining samples belong to 0-World and 1-Sports, we combine 

samples belong to Business and Sci/Tec to a new training batch and assign a new label 2-Others. 

We can get six pre-train tasks using that method. 

This transformation expands the scale of the pre-training tasks, but also brings a problem, that is, 

the probability language model predicted of 2-Others label will increase. Take a sample SW 

belongs to 0-World label as an example: For the sentence SW, among the six pre-training tasks, its 

label is 0-World three times and 2-Others three times too, so the language model tends to output 2-

Others label when predicting similar sentence in the downstream tasks. We still use Simulation-

Soft-Label to counteract this negative effect. Taking the above transformation as an example, a 

Simulation-Soft-Label (Table 2) is given to each initial label sample as follows: 

Table 2: Simulation-Soft-Label of Multi-Label classification task 

Original Label Simulation-Soft-Label 

0-World 0.9 world, 0.1 sports, 0 others 

1-Sports 0.1 world, 0.9 sports, 0 others 

2-Others 0. 3 world, 0.3 sports, 0.4 others 

We use TM to classify the samples into three labels, 0-World, 1-Sports & 2-Others to obtain a 

Soft-Label TM. The Training Soft Label are also obtained by weighted-sum method. Although this 

method cannot completely eliminate the negative effects, some of the remaining negative effects 

can be regarded as noise, which improves the robustness to some extent. 

The corresponding PVPs are as follows: 

fpre(x)= “S1. It is a <M> news.” 

vpre(y)= [global, sports, business, sci-tech, other] 

S1 represent input sentence. For different transformation format, we can take the subset of vpre(y). 

Through the task transformation process, we get the pre-train tasks for TSP. Each sample has an 

original label and a Training Soft Label. TSP needs to learn these two labels separately, adjust the 

loss weight of the two labels with α, and use p to represent the language model prediction, then the 

loss function is expressed as follows: 

Loss = Cross Entropy (L, p) +αCross Entropy (TSL, p)                               (5) 
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4. Experiments 

4.1 Set up and Baseline 

Concatenating USP and TSP as prompt initialization for downstream tasks, we conduct 

experiments om both Chinese and English tasks, (see Table 3). 

Table 3: Datasets 

English Chinese 

Dataset Class number Dataset Class number 

SST-2 2 ChnSent 2 

BoolQ 3 LCQMC 3 

RTE 3 CMNLI 3 

CB 3 OCNLI 3 

For English datasets, we conduct TSPPT based on T5-XXL with 11B parameters because 

previous works have shown that, T5-XXL using Prompt Tuning [7] is comparable with fine-tuning 

under the full-data setting. For Chinese datasets, we do PT based on a 11B model CPM-2 [8]. We 

use 150 soft tokens for TSPPT. USP and TSP are 100 and 50 tuneable soft tokens. As a result, the 

tuneable parameters are only 100×4096 = 4.1 × 105 = 410K. Compared with the 11B (1.1 × 1010) 

parameters of FT, TSPPT only needs to store 3000 times smaller parameters for each task. 

For Few-Shot scenario, following the classic method of PET [4] and (Perez et al., 2021) [17], we 

randomly select 32 samples from the original data set as the training set Dtrain, and select the same 

number of samples to construct the validation set Ddev to tune the hyperparameters. We follow 

Zhang et al. (2021) [18] and Gao et al. (2021) [10] to use the original validation set as the test set 

Dtest, which means | Dtest | > | Dtrain | = | Ddev |. 

We compare TSPPT with traditional fine-tuning, original Prompt Tuning [7], SPoT [12] and PPT 

[14]. Considering Hybrid PT, adding hard prompt to prompt tuning, usually improves prompt 

tuning performance, we take it as a baseline too. 

4.2 Main Results 

The main results of English and Chinese datasets are shown in Table 4. 

Table 4: Classification results.  

/ FT PT Hybrid PT PPT SPoT TSPPT 

SST-2 91.40.8 70.515.5 87.66.6 93.50.3 91.20.1 93.50.2 

BoolQ 80.82.4 61.05.3 79.81.5 66.45.7 67.35.0 82.30.8 

RTE 64.12.0 53.53.5 56.82.6 58.91.6 57.71.8 62.42.1 

CB 86.55.3 50.74.1 66.57.2 71.26.2 70.25.5 74.06.1 

ChnSent 86.11.8 62.13.1 79.24.0 90.10.8 

/ 

89.80.5 

LCQMC 58.81.8 51.53.4 54.62.3 59.10.6 64.20.7 

CMNLI 40.71.0 35.40.5 37.10.6 43.00.5 44.00.4 

OCNLI 38.81.5 37.00.5 37.81.4 40.10.4 41.20.5 

The experiments are conducted with 32 training samples and 32 validation samples on each 

dataset. FT means traditional fine-tuning, where the entire model (with about 11B parameters) 

should be tuned on each dataset. PT means prompt tuning, and its soft prompt initialization is 

randomly initialized from the normal distribution. We report the mean and the standard deviation 

over 5 random seeds. The score marked as bold means the best performance among all the methods. 

In the experimental results, four important results can be seen. First, compared with FT, TSPPT 

has achieved better results on all Chinese tasks, and most of the English tasks with less parameters. 

This means that even though the MLM has been fine-tuned on the downstream task, there is still a 

gap between the model pre-training and downstream task, and TSTPP bridges the gap to some 
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extent. Second, after adding some hard prompt, Hybrid PT performs better than PT, but there is still 

a gap with TSTPP. This phenomenon is universal in prompt learning. TSPPT can also improve 

performance by adding hard prompts. Since we focus on the prompt pre-training process, do not 

introduce here. Third, few-shot learning is notorious for its instability, which becomes very obvious 

in Vanilla PT. TSPPTPPT results in lower variances on most of the datasets which means it 

alleviate this problem to some extent. Finally, comparing with PPT [14] and SPoT [12], TSPPT still 

perform better on most of datasets. It proves the conclusion that two kinds of skill and knowledge 

distillation are helpful for prompt tuning. 

5. Conclusion and Future Work 

In this paper, we propose two-stage Prompt pre-training (TSTPP) to improve prompt tuning 

performance in the field of Few-Labels classification (few-shot and Full-data). We designed the 

pre-training tasks in a variety of ways, that is, constructing from raw corpus, transforming non-

classification tasks and multi-labels tasks to few-label classification tasks. Then use them to pre-

train sub-prompts USP and TSP in two stages respectively. Finally concatenate USP and TSP as 

prompt initialization used in downstream tasks. TSPPT also incorporates knowledge distillation and 

data enhancement techniques. We conducted experiments both on Chinese and English datasets, 

showing that TSTPP outperforms other prompt tuning methods, and achieves even surpass the 

performance of traditional fine-tune with fewer tuned parameters. 

In the future, it will be interesting to see how to get rid of the label number constraint by 

structuring the pre-training process more cleverly. In addition, TSPPT uses generative tasks as the 

source tasks for classification. How to apply TSPPT to generative tasks is also worth exploring. 
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