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Abstract: This study aims to optimize the discrimination performance of gamma/proton in 

high altitude detection of astrological radiation (HADAR) experiments by employing the 

multilayer perceptron (MLP) algorithm. The HADAR experiment is used to observe the 

Cherenkov light produced by cosmic rays and gamma rays in the atmosphere via a composite 

array composed of four water lenses and surrounding scintillation detectors. And it is highly 

competitive in detecting the transient sources and the prompt emission of gamma-ray bursts 

due to its advantages such as low threshold energy (~30GeV) and wide field of view (~30°). 

However, the image discrimination between background noise and signal become weak 

when the detected energy of HADAR is less than 100 GeV, leading to unsatisfactory 

gamma/proton discrimination performance of traditional Hillas parameter methods. In this 

study, we employ MLP as a discriminator to conduct training and classification based on 

input characteristic parameters (such as Hillas parameters and core information). The results 

of Monte Carlo simulation demonstrate that the MLP method exhibits excellent performance 

and accuracy gamma/proton identification. Specifically, the discrimination between signal 

and background noise is enhanced at detection energies between 30-100 GeV, and the 

highest achieved Q-factor is 2.17 (proton exclusion rate ~97.80%, gamma retention rate 

~32.20%). This study provides valuable references and a solid foundation for enhancing the 

gamma/proton discrimination performance of HADAR. 

1. Introduction 

Very High Energy (VHE; E ≥ 30 GeV) gamma rays are a signature of extreme physical phenomena 

in the universe, commonly observed in processes such as galactic nuclei (AGN [1]), gamma-ray 

bursts (GRB [2]) and so on. Thanks to the advancements of broad imaging atmospheric Cherenkov 

telescope technology (IACT [3]), researchers are able to study the physical processes of AGN or the 

morphology and spectra of GRBs by observing Cherenkov light generated from the interaction 

between cosmic rays and Earth's atmosphere. This provides an effective means for exploring the 

nature and origin of these extraordinary physical phenomena. 
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IACTs can only monitor individual sources and are unable to cover extensive celestial areas owing 

to the drawbacks of a narrow field of view (3.5-5°) and short effective observation time (10%) [4]. 

To address this issue, the high altitude detection of astronomical radiation (HADAR) experiment, a 

ground-based experimental array with low threshold energy and large field of view, is proposed and 

carried out [5]. HADAR is a refracting ground-based telescope array based on atmospheric imaging 

Cherenkov technology that collects atmospheric Cherenkov light signals through a large aperture 

wide-angle water lens (lens + pure water) system to achieve the observation of VHE cosmic rays and 

gamma-rays. 

However, during observation, Cherenkov photons caused by VHE gamma-rays are significantly 

lower compared to cosmic rays [6]. Therefore, in the process of data analysis, it is crucial to 

differentiate between signals originating from gamma rays and cosmic rays. The traditional approach 

is to parameterize the image using Hillas parameters (length, width, orientation, etc.) [7]. As an 

empirical result, gamma rays produce images that are much longer and narrower than cosmic ray 

(mainly proton) lines. [8] However, when the energy is reduced, especially below 100 GeV, HADAR 

is poor in distinguishing them, resulting in the Hillas parameter method not being applicable. 

To solve this problem, there are different methods, such as neural networks, random forests and so 

on. The multilayer perceptron (MLP) method [9] used in this study is a simple, fast and robust neural 

network algorithm. Based on the training data set, the MLP mimics biological neurons to build a 

mathematical model, and the optimal classification strategy is obtained through continuous iterative 

training. In this study, we used the MLP model provided by multivariate data analysis package 

(TMVA) [10] to improve the discrimination performance of gamma/proton in HADAR. 

The structure of this paper is as follows: the second section briefly describes the HADAR 

experiment, the third section introduces the simulation parameters and MLP settings, the fourth 

section is the simulation results, and finally, the conclusion summarizes the entire paper. 

2. HADAR Experiment 

The HADAR is made up of four water lenses. Each water lens can detect the Cerenkov light with 

an energy range of 10 GeV to 10 TeV generated by cosmic rays or gamma-ray. The arrangement of 

the experiment is as shown on the left side of Figure 1. Specifically, four water lenses with a side 

length of 100 meters are arranged in a 2×2 square [11]. And the small white squares are plastic 

scintillator detectors located in the Yangbajing array. The scintillator can be detected in conjunction 

with the water lens. The design of a single water lens is shown in detail on the right side of Figure 1. 

At the top of the water lens is a crown-shaped acrylic lens with a diameter of 5 meters, below which 

sits a water tank with a radius of 4 meters and a height of 7 meters. The bottom of the tank is equipped 

with 18,961 photomultiplier tubes (PMTs) with a diameter of 5 cm each. The interior walls of the 

steel tank are coated with an absorbent material, while the exterior walls are coated with thermal 

insulation material. Inside the tank is pure water, which can collect Cherenkov light to the PMTs 

placed at the focal plane of the lens. 

The reflection-based IACT has achieved many achievements in VHE gamma-rays observation. 

However, due to the configuration where the camera and incident light were on the same side in 

reflection-based IACT, the camera can obstruct some of the incoming light, necessitating a constraint 

on the camera size and consequently limiting the field of view of the reflection-based IACT. Due to 

the low field of view, the reflection-based IACT must take time to rotate to the specified position. 

Therefore, it is difficult to detect the prompt emission of gamma-ray bursts. Refractive IACT using a 

lens-based imaging system can boast a wider field of view. The HADAR experiment, with a field of 

view of 0.84 sr, possesses the potential to effectively detect transient radiation due to its expanded 

field of view. 
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Left: distribution of the HADAR experimental setup. Right: design of a single water lens.[12] 

Figure 1: Schematic diagram of the HADAR experiment 

3. Simulation Method 

3.1 HADAR Simulation Settings 

The simulation of extensive air showers (EAS) for HADAR was completed using the Corsika 

software package (Version 74100), following the work of Xin GG [5], Qian XL [4], Chen QL [11], 

and others. The package adopted the atmospheric Cherenkov mode, where the high-energy part of 

the strong interaction model used QGSJETII 04 [13], low-energy part used Gheisha, and the 

electromagnetic component utilized EGS4 program. The simulation was set up at an altitude of 4300 

meters, corresponding to an atmospheric depth of 606 g/cm2, and at the geographic coordinates of 

Yangbajing (N30.0848, E90.5522). The primary cosmic ray particle energy range was set from 30 

GeV to 100 GeV, with an incident zenith angle range of 0-30° and an azimuthal angle range of 0-

360°. All events were uniformly distributed within a circle with a radius of 400 meters centered on 

the HADAR array. Under these settings, the Corsika software package generated original data for the 

atmospheric Cherenkov light produced by EAS for subsequent simulation and analysis. 

Regarding the trigger mode of the PMT, HADAR differs from other IACT experiments due to the 

wide field of view of the HADAR telescope, which introduces a significant amount of night sky 

background noise. Therefore, suppressing the numerous noise signals from the night sky background 

has become a bottleneck issue for the HADAR experiment. For high-energy events, the impact of 

night sky background noise is somewhat reduced because high-energy events generate a large number 

of Cherenkov photons. The signal from gamma photons is not likely to be drowned out by the night 

sky background noise. However, for low-energy events, they do not produce as many photons as 

high-energy events, and the faint Cherenkov photons can easily be overwhelmed by the noise. In 

order to improve the measurement of signals in the presence of night sky background noise, Xin GG 

et al. proposed a triggering algorithm suitable for HADAR. For more details on the triggering process, 

refer to [14], where the PMT trigger setting of this study aligns with theirs. 

3.2 Hillas Parameters 

Due to the large longitudinal spread and small transverse spread of air showers induced by gamma 

rays, the images in the camera appear elliptical, whereas cosmic ray-induced shower images are more 

dispersed, as shown in Figure 2. The shapes of these ellipses are typically described by the first and 

second moments of the image intensity distribution. Parameters used to characterize the ellipses and 

their orientation in the camera is known as Hillas parameters, which have become crucial parameters 
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in Cherenkov telescope event analysis. 

 
Left: a 1.0 TeV gamma-ray shower image, with a regular ellipse-like shape. Right: the image of a 

2.6 TeV proton in the camera, with an irregular and more wide shape. Image couresy.[15] 

Figure 2: Two example images of the light intensity distribution in the camera of the telescope 

Figure 3 illustrates some parameters of the Hillas ellipse. Below we list some of the important 

parameters and provide a short description: 

1) Center of gravity: The center of gravity of the image calculated from the distribution of photons 

on the camera, which is the center of the ellipse; 

2) Length: length of the long axis of the Hillas ellipse; 

3) Width: short axis length of Hillas ellipse; 

4) α: the angle between the major axis of the ellipse and the line between the center of the ellipse 

and the center of the camera; 

5) Size: the amount of charge accumulated on the camera by a single instance. 

The Cherenkov light image after Hillas parameterization helps to identify the primary particles. 

 

Figure 3[16]: Hillas definition of each parameter. 
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3.3 MLP Simulation Settings 

The MLP model is, in fact, a simulation and simplification of biological neurons. The most typical 

MLP consists of three layers: the input layer, hidden layer, and output layer. MLP is usually applied 

to supervised learning problems, where it is trained on a set of input-output pairs and learns to model 

the correlations or dependencies between these inputs and outputs. The training involves adjusting 

the model's parameters or weights and biases to minimize errors as much as possible, as shown in 

Figure 4. 

 

Figure 4: Schematic diagram of the MLP training process. 

The MLP method used in this study was provided by the TMVA software package, which is part 

of the ROOT [17] data analysis framework (ROOT version 6.28). The following MLP settings were 

used in this study: 

 

Figure 5: MLP model reference diagram, Layer 0 is the input parameter, Bias node is the bias node, 

Layer 1 is the hidden layer, Output layer is the output result(Outputs floating point numbers from 0 

to 1, determines particle type based on cut conditions). 

1) The input layer selected four feature parameters: MRSW (obtained by uniformly averaging and 

scaling the Hillas Width, referencing the simulation process in the HESS experiment [18]), MRSL 

(similar to MRSW, obtained by uniformly averaging and scaling the Hillas Length), MRSS 

(processed similarly to MRSW and MRSL using Hillas Size), and Core Dist (Core Distance, 

representing the distribution of core distances, inspired by the setup in reference [19]); 

2) The activation function used was the Sigmoid function; 
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3) The hidden layer was set to 1 layer with 4 nodes, as illustrated in Figure 5; 

4) To prevent overfitting and determine suitable numbers of test and training events, guidance from 

the TMVA manual's configuration instructions was consulted. From a dataset comprising 14530 

gamma events and 13338 proton events, totaling 27868 events, 12000 events were randomly chosen 

for testing and training purposes. 

4. Simulation Results 

The relationship between the training loss function and the number of training epochs was 

illustrated in Figure 6. As the number of training epochs increased, the value of the loss function 

gradually converged. At 150th epochs, both the test and training sets were stable. Figure 7 shows the 

comparison of gamma and proton in four input parameters. For the convenience of comparison, the 

data were processed according to the data standardization principle of TMVA. It was observed that 

distinguishing between particle types based solely on a single parameter was challenging in the 30-

100 GeV range. Among the parameters, Core Dist showed the best performance, followed by MRSL, 

while MRSW and MRSS exhibited poorer performance. 

 

Figure 6: Loss function for MLP training and test data. 

 

Figure 7: Comparison of the four input parameters for gamma and proton data, the data have been 

normalized according to TMVA's harmonization principles, with the blue shaded area being the 

signal (gamma) data and the red shaded area being the noise (proton) data. 

Figure 8 shows the results after MLP training. After the MLP model was trained, the input of the 

four characteristic parameters yielded an output from the MLP. Based on this output, appropriate CUT 

conditions were chosen to determine the particle type. At that time, the separation performance was 

significantly better than any of the methods shown in Figure 7. 
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Figure 8: Results after MLP training, blue shaded areas are signal and red shaded areas are noise. 

The overall goal of gamma/proton identification is to maximize the significance of the gamma 

source. Generally, a Quality Factor, also known as Q factor, is used to evaluate the quality of 

background inhibition. Q factor is calculated by Q=,  is identifying the ratio of simulated gamma 

rays after selection to simulated gamma rays before selection, or the survival rate of gamma rays;  is 

the ratio of the simulated proton after selection to the simulated proton before selection, representing 

the survival rate of the proton. Figure 9 shows the relationship between the Q factor and the CUT 

threshold for gamma/proton discrimination at 30-100 GeV. The maximum Q factor was 2.17, and the 

survival rate of gamma was 32.20% and the exclusion rate of proton was 97.80%. 

 

Figure 9: Relationship between Quality Factor and CUT threshold, where the black dotted line is 

the survival rate of gamma events, the green dotted line is the retention rate of protons, and the red 

solid line is the Quality Factor. 

5. Conclusion 

In this study, gamma/proton discrimination was achieved by utilizing an MLP model on the Monte 
Carlo simulated data for the HADAR experiment at 30-100 GeV. The approach integrated Hillas 
parameters, as well as the charge quantity of images and the distribution of core distance, enabling 
multivariate analysis. The findings indicated that, by choosing appropriate CUT thresholds, within 
the HADAR field of view, the maximum Q-factor reached 2.17, resulting in the exclusion of 97.80% 
of proton background. Consequently, this provided a valuable reference for enhancing gamma/proton 
discrimination in the HADAR experiment. It is hoped that the HADAR experiment will be established 
successfully in the future, and superior discrimination methods will be identified to enhance 
sensitivity towards observed sources.  
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