
Control Method of Temperature for Multi-stack Fuel Cell 

System 

Zhou Su1,a, Yang Ning1,b,*, Chen Chunguang1,c 

1College of Automotive Studies, Tongji University, Shanghai, 201804, China 
asuzhou@tongji.edu.cn, b2131588@tongji.edu.cn, c2031636@tongji.edu.cn 

*Corresponding author 

Keywords: Multi-stack fuel cell system, thermal management subsystem, model predictive 

control, BP neural network, dynamic matrix control 

Abstract: In order to control each stack temperature in a multi-stack fuel cell system 

(MFCS), a model prediction control algorithm based on back propagation neural network 

(BPNN) is proposed. Firstly, a parallel multi-stack fuel cell thermal management subsystem 

model was established and a BP neural network system prediction model was trained by 

applying the system model simulation data; then, the step response matrix of the system 

prediction model was obtained at typical operating conditions and a dynamic matrix 

controller was designed; finally, a test operating condition was designed for simulation 

analysis. The results show that the dynamic matrix controller (DCM) based on BPNN can 

quickly and accurately control the temperature of the multi-stack fuel cell system, while 

having the characteristics of small overshoot and short regulation time. 

1. Introduction 

As an energy conversion device, proton exchange membrane fuel cell (PEMFC) is widely 

regarded as one of the alternatives to traditional vehicle power sources for its low operating 

temperature, high specific energy, and fast start-up speed [1]. However, the power of PEMFC with 

single stack cannot meet the demands of diverse operating conditions and high-power application 

scenarios [2], and its structural limitations make the system less fault-tolerant. In order to solve the 

above problems, Multi-stack Fuel Cell System has emerged. The parallel use of multiple stacks can 

not only improve the power of the system, but also enhance the fault tolerance and reliability of the 

system [3]. In addition, the introduction of multiple stacks makes the optimal allocation of power 

possible, thus contributing to the overall system efficiency [4]. 

Most of the automotive fuel cells are PEMFCs, in which the membranes are prone to 

decomposition at high temperatures. Therefore, the internal temperature of PEMFC needs to be kept 

within a reasonable range (60~90°C). The regions of the fuel cell involving electrochemical 

reactions need to maintain suitable temperature, which have an important impact on the fuel cell 

electrochemical reaction rate, reaction gas pressure, and remaining useful life (RUL) [5,6]. Therefore, 

timely and stable thermal management is very important for the safety and performance guarantee 

of fuel cells. Experts at home and abroad have carried out a lot of research work on temperature 

control of PEMFC. O'Keefe et al [7] designed a time-varying PI controller for a 5kW water-cooled 
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fuel cell system to control the cell temperature by the flow rate of the cooling water, and the results 

demonstrated the good performance of the proposed control method. Pei Yaowang et al [8] proposed 

a controller based on an adaptive linear quadratic regulator and experimentally verified that the 

controller has good control performance. Arce et al [9] designed a Model Predictive controller (MPC) 

for the thermal management subsystem with the target of maximising the efficiency and minimising 

the RUL of the fuel cell, which obtained good control results. Shen Wei et al [10] used a system 

identification approach to establish linear predictive models in different steady-state operating 

conditions points of MFCS thermal management subsystem and designed a MPC controller. The 

results show that it can quickly and accurately perform the temperature control of each stack in the 

MFCS. Zhao Hongbo et al [11] designed a neural network-based self-resistant controller, replacing 

the nonlinear error feedback control law with a neural network model, and their simulation verified 

that the controller has a better control quality under the disturbances of different degrees of noise. 

In this paper, a parallel MFCS thermal management subsystem, which consists of three stacks 

with rated power of 20kW, 70kW and 120kW respectively, is designed with reference to the single-

stack PEMFC system model and temperature control method. According to the dynamic analysis of 

heat balance, the MPC algorithm is used to control the temperature of each stack with large time lag 

in real time. Firstly, a back propagation neural network (BPNN) is applied to establish a prediction 

model for the thermal management subsystem of MFCS. Secondly, the step response matrix of the 

system prediction model is obtained through the principle of linear superposition at typical working 

conditions. Then a Dynamic Matrix Controller (DMC) is designed to control the temperature of 

MFCS. Finally, the performance of controller is verified under given operating condition. 

2. Model of MFCS Thermal Management Subsystem  

Based on the power requirement of a heavy commercial vehicle, a set of MFCS with a total 

power of 210 kW is matched. According to [12], when the power of each stack is optimally 

allocated using the RUL and efficiency as the comprehensive optimization indexes, the optimal 

split-stack scheme is three stacks with the rated power of 20 kW, 70 kW, and 120 kW, respectively. 

In this paper, a related work is carried out on the basis of the MFCS established by this method.  

2.1. Architecture of Proposed Thermal Management Subsystem  

The design of the MFCS thermal management subsystem structure not only needs to meet the 

heat dissipation requirements of different components, but also to ensure the functional 

independence of the thermal management subsystem. The temperature control mode of MFCS 

mainly based on water cooling. The thermal management subsystem of MFCS is designed on the 

basis of the single-stack fuel cell structure [13], and its structure is shown in Figure. 1.  
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Figure 1: Architecture of proposed thermal management subsystem. 
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2.2. Modelling of Proposed Thermal Management Subsystem 

Assuming that the heat flow is the same for the three stacks, the heat exchange process of the 

stacks is analysed using a single stack as an example. The heat balance relationship of the stack is 

mainly divided into internal electrochemical reaction heat generation and heat transfer with the 

outside world [14]. The heat balance expression of the stack is given by 

rad convcg react an ca coolQ Q Q Q Q Q Q                                             (1) 

where cgQ  is exchange heat of stack in kW, reactQ  is the heat produced from the reaction inside 

the stack, anQ  is the difference between the heat carried by reactants of anode inlet and outlet, caQ  is 

the difference between the heat carried by reactants of cathode inlet and outlet, coolQ  is the heat 

removed from the cell by coolant, radQ  is heat radiation, convQ  is heat convection. 

The heat production from the electrochemical reactions inside stack can be described as 

( )react st the stQ I nE V                                                             (2) 

where stI is the current of stack in A, n  is the number of cells in stack , theE  is theoretical 

maximum electric potential of a cell in V,  stV  output voltage of stack in V. 

The heat exchange between the fuel cell stack and the outside world mainly includes the heat 

exchange with the reactants, coolant and environment. The heat exchange with the reactants can be   

obtained by the difference between the heat carried by the imported and exported substances which 

are modelled by 

22
, , , , ,

H Hvap vap liq

an an in an in an out an out an outQ Q Q Q Q Q                                              (3) 

2 22 2
, , , , , , ,

O N O Nvap vap liq

ca ca in ca in ca in ca out ca out ca out ca outQ Q Q Q Q Q Q Q                                   (4) 

where the superscript 2H , vap , 2O , 2N , liq  are hydrogen, oxygen, nitrogen, vapour and liquid 

water, respectively, the subscripts ca , an , in  and out are cathode, anode, inlet and outlet. 

The heat exchange between the stack and the coolant can be obtained from the difference 

between the heat carried by the coolant in the stack's inlet and outlet, and be described as 

, ,( )cool p cool in cool outQ mc T T                                                      (5) 

where m  is water mass flow rate trough the cell in kg/s, pc is heat capacity of coolant in J/(kg K) , 

,cool inT  and 
,cool outT  are the inlet and outlet water temperature in K, respectively. 

Heat convection and radiation are two main types of heat exchange between stack and the 

environment, which are given by 

0( )conv conv stQ hA T T                                                          (6) 

4 4

0( )rad rad stQ A T T                                                         (7) 

where h  is the convection heat transfer coefficient in 2W/(m K) , convA  is the effective contact area 

of heat convection in 2m , stT  is the temperature of stack in K, 0T  is ambient temperature in K,   is 

the emissivity of stack,   is Stefan-Boltzmann constant , radA  is the effective contact area of heat 

radiation in 2m . 
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3. Proposed Temperature Control Algorithm of MFCS   

The MPC algorithm is good at handling system with problems of multivariate and large time lag. 

It is a method with excellent performance for the MFCS temperature control problem [15]. Therefore, 

the MPC algorithm is selected to control the system temperature in order to obtain better control 

results. 

3.1. Architecture of MFCS Control Algorithm 

In this paper, the radiator, coolant circulation pump, diverter valve 2 and diverter valve 3 are 

selected as actuators. The current of each stack is treated as a disturbance input to the system, and 

the structure of the established MPC controller is shown in Figure.2. The reference temperature of 

all three stacks is set to 75°C, and the coolant inlet reference temperature is set to 65°C. Mapping 

relationship of input and output is shown as 
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where 
pumpn  is the speed of pump in rpm, fann  is the speed of radiator fans in rpm, 2  is the 

opening of diverter valve 2, 3  is the opening of diverter valve 3, 
st,1T , 

st,2T , 
st,3T and 

st,inT are the 

temperature of stack 1,stack 2, stack 3 and coolant. 
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Figure 2: MPC controller architecture of MFCS thermal management subsystem. 

3.2. BPNN Prediction Model of MFCS Thermal Management Subsystem 

BPNN is a multi-layer feed-forward neural network based on artificial neuron model, and the 

parameters in the neural network are trained by back-propagation algorithm [16]. The BPNN has a 

good fitting ability for nonlinear system, thus it is possible to train a BPNN as a nonlinear 

prediction model for the thermal management subsystem of the MFCS to reflect the temperature 

change characteristics under different operating conditions.  

The nonlinear system prediction model can be represented by 

( 1) ( ( ),..., ( 1), ( ), ( ),..., ( 1), ( ))y k f u k m u k u k y k n y k y k                               (9) 

where ( )u k  and ( )y k  are system inputs and outputs at the time of k, m and n are the index of the 

inputs and outputs of the system respectively. 

10



The inputs of the thermal management subsystem at the moment of (k-1) and the inputs and 

outputs at the moment of k are selected as inputs to the BPNN, and the outputs of the system at the 

(k+1) moment are used as desired outputs to train the neural network. Define the input and output 

of the system as shown in equation 
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，                                                         (10) 

where 
st,1I , 

st,2I and 
st,3I  are current of each stack. 

A random signal is applied to the system based on the relationship between input and output to 

obtain the output of the system. The input and output data of the system are paired to form the 

original training data, and the BPNN is trained by MATLAB toolbox. The structure and parameters 

of the established neural network are shown in Table 1. 

Table 1: The parameter of BPNN. 

Parameter  Layer architecture Activation function Epoch 

Value 18×13×4 Sigmoid 302 

The accuracy of the trained BPNN prediction model is examined by designing the validation 

working condition, and the validation results are shown in Figure. 3. It can be seen that the 

maximum error between the BPNN outputs of the three stacks and the temperature of the inlet 

coolant and the actual data of the system is only ±0.2°C, which indicates that the single-step 

prediction model is able to accurately describe the dynamic characteristics of the system. 

  
(a)                                                    (b) 

Figure 3: BPNN prediction model validation of (a) stack 1 and (b) inlet coolant. 

while designing the MPC controller it is necessary to obtain the system prediction response over 

the entire prediction horizon p. A p-step prediction of the system can be made as shown as 

( ) ( ( ),..., ( 1), ( ),..., ( 1))y k p f u k p m u k p y k p n y k p                               (11) 

Multiple single-step prediction neural network models are connected in series to form a recursive 

prediction network to satisfy the MPC requirements for performance prediction in the prediction 

horizon. The recursive neural network prediction model is shown in Figure. 4, which predicts the 
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system response at each sampling moment, and then builds the MPC controller by predicting the 

system response in the prediction horizon. At the same time, the feedback correction function in the 

MPC is realised based on the difference between the output of the prediction model and the output 

of the actual system at the current sampling moment as the feedback correction quantity. 

 

Figure 4: Recursive multi-step BPNN prediction model. 

3.3. Design of DCM Controller 

A typical method in MPC algorithm is DMC, which is based on the principle of model prediction 

by means of a unit step response model of the system, and the control law of the system is obtained 

by solving the optimisation problem [17]. Due to the output of the system after prediction by BPNN 

has nonlinearity, it is assumed that the system satisfies the linear superposition principle when the 

step response model is obtained. 

Considering the n-dimensional measurable disturbances d, the unit step response model of the 

multiple-input multiple-output system is shown as 

( ) ( 1) ( 1) ( 1)ss u dY k M Y k S u k S d k                                              (12) 

where ssM  is the state transfer matrix, uS and dS  are the input matrix and measurable disturbance 

matrix of the unit step response state space model, respectively. 

According to the basic principle of predictive control, assuming that the control horizon is m and 

the prediction horizon is p. Firstly, a p-step prediction is made based on Eq. (12), and the output 

sequence of the system in the prediction horizon can be expressed as 

ˆ ˆ( 1| ) ( ) ( ) ( )p u dY k k MY k S U k S d k                                              (13) 

where ( 1| )pY k k  is the output sequence within the prediction horizon p, ( )U k  is the control 

sequence within the control horizon m,  M , ˆ
uS and ˆ

dS  are the state transfer matrix, input matrix, and 

measurable disturbance matrix in the prediction horizon, respectively. 

Considering the input and output constraints of the system, the optimal quadratic control 

performance indicator can be expressed as 

2 2
( ( 1| ) ( 1)) ( )y p uJ Y k k R k U k                                             (14) 

where y  is error weighting matrix, u is control weighting matrix, ( 1| )R k k is the sequence of 

reference values in the prediction horizon p. 

Quadratic Programming is used to solve the solution of the optimisation problem. ( )U k  is 

extracted as the optimisation variable and transformed into the quadratic programming standard 

form as shown as 

( ) ( ) ( 1| ) ( )T TJ U k H U k G k k U k                                             (15) 
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where ( 1| )pE k k  is the error between the desired output and the predicted output of the system. 

The optimisation sequence ( )U k  is obtained by the quadratic programming algorithm, taking 

the first control increment ( )u k  of the optimisation sequence. Based on the control quantity 

( 1)u k   of the previous moment and the control increment of the current moment ( )u k , the current 

control quantity ( )u k  is calculated and applied to the controlled system. Then the control quantity of 

the system at the next moment is calculated according to the mechanism of “rolling time domain 

and repeating” in MPC theory. 

The constraints of the system need to be taken into account when designing the controller. For 

the system, the input and output constraints are set as shown in Table 2. Considering the hysteresis 

of the temperature change of the MFCS, the prediction time domain p is selected as 40, the control 

time domain m is 10, and the sampling time is 1s. The system is designed to be robust to the 

temperature change of the MFCS. 

Table 2: The constraints of MPC controller. 

Parameter  Min Value Max Value Constraint Type 

npump 50 4500 hard 

nfan 50 5000 hard 

φ2  0.1   0.95 hard 

φ3  0.1   0.95 hard 

Tst,1 313.15 363.15 soft 

Tst,2 313.15 363.15 soft 

Tst,3 313.15 363.15 soft 

Tst,in 313.15 363.15 soft 

4. Validation of the DCM Controller 

4.1. Design of Validation Condition  

The traditional verification conditions are mainly step conditions, but the ideal step conditions do 

not exist in the actual system. In order to verify the effect of the proposed controller, step-like 

conditions are used instead of standard step conditions. The designed switching slope is 2A/s, and 

the operating current range of the stack is between 0 and 300 A. Seven switching points are set in 

the operating current range to validate the controller, and the validation conditions are shown in 

Figure. 5. 
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Figure 5: Validation conditions. 

4.2. Results and discussions of the proposed controller 

The MPC controller based on the piecewise linearization is a classical method for the 

temperature control of the MFCS [10]. The performance of two control methods, MPC based on 

piecewise linearization and DCM based on BPNN, are compared and analysed through simulation. 

Firstly, the step response matrix and state space model corresponding to the steady state points of 

the system at 60 A, 140 A and 240 A need to be obtained under offline conditions, respectively. 

Then, the step response matrix and state space model are switched according to the current 

magnitude of the three power stacks. The switching rules are shown in Table 3. 

Table 3: Switching Rules of Predictive Model. 

Steady State Points(A) Current range(A) 

60  0~100 

140  100~200 

240  200~300 

The above two controller are used to control the temperature of the MFCS. Some output results 

of the two controllers are plotted in Figure. 6 and Figure. 7. It can be seen that compared with the 

MPC controller based on piecewise linearization, the speed of pump and fan controlled by DMC 

controller based on the BPNN is much smoother and so are the openings of diverter valves 2 and 3, 

and there is no violent fluctuation at the switching point of the operating conditions. 

   
(a)                                                 (b) 

Figure 6: The speed of radiator fan with (a) linear based MPC and (b) BPNN based DCM. 
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(a)                                                   (b) 

Figure 7: The speed of pump with (a) linear based MPC and (b) BPNN based DCM. 

The simulation results of temperature controlled by the above two methods are shown in Fig. 8, 

from which we make the following observations. 

(1) Under the control of MPC based on piecewise linearization, the maximum overshoot of the 

temperature is more than 3°C, and it takes 280 s for the temperature to return to stability when the 

operating condition changes. 

(2) Under the control of DCM based on BPNN, the maximum error between the simulated and 

the ideal temperature can be maintained within 1.5°C, and the temperature can be adjusted to the 

ideal temperature smoothly and robustly within 180 s when the operating condition changes. 

(3) The simulation results show that the designed DMC has a good control effect compared with 

MPC based on piecewise linearization. 

  
(a)                                           (b) 

Figure 8: The simulation results of (a) linear based MPC and (b) BPNN based DCM. 

5. Conclusions 

A thermal management subsystem model of the parallel MFCS is built, and a BPNN-based DMC 

is designed to control the MFCS temperature. Replacing the linear prediction model with the BPNN 

can better deal with the mismatch between the prediction model and the real system in MPC, which 

greatly improves the accuracy of prediction model and the performance of the controller. The step-

like conditions are used to validate the performance of the BPNN based DCM compared to linear 

based MPC. The results show that the fluctuation of the MFCS temperature is maintained within 

1.5°C and the temperature regulation time is within 180s, which indicates that the performance of 

proposed DCM is obviously better than that linear based MPC. In conclusion, the BPNN based 
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DMC with is robust and more suitable for the control of MFCS temperature, which has certain 

application value. 
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