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Abstract: With the popularization of new energy vehicles (NEVs) and the increasing 

severity of traffic congestion, charging difficulties have become a concern for people. 

Effective management and optimization of the NEV charging process have become 

increasingly important. This not only concerns the safety and stable operation of the power 

grid, but also directly affects the efficiency of road traffic, the utilization of renewable 

energy, and the charging experience and cost for users. The charging behavior of NEVs is 

a complex process that involves multiple considerations, such as grid load balancing, 

availability and efficiency of charging stations, user charging needs, and electricity prices. 

To address these issues, this paper proposes a NEV charging optimization strategy based 

on reinforcement learning (RL) algorithm, which can handle high-dimensional and 

complex environments and effectively deal with randomness and uncertainty factors. This 

strategy can not only reduce the load fluctuation of the power grid, improve the safety and 

stability of the power grid, but also reduce the charging time and cost of users, improve 

charging efficiency and user satisfaction. Meanwhile, by combining renewable energy, this 

strategy can also promote sustainable development, reduce reliance on traditional energy, 

and improve the utilization rate of renewable energy. 

1. Introduction 

With the vigorous development of the global economy, energy demand has sharply increased, 

and the environmental problems caused by it have become increasingly prominent [1]. Especially 

automobile exhaust emissions have become one of the main culprits leading to global warming and 

air pollution [2]. In this context, NEV has received widespread attention as an important means to 

address climate change and promote the transition to green energy [3]. With the continuous 

progress and maturity of technology, the market share of NEV is rapidly increasing [4]. At the 

national level, there is also a strong promotion of the use of clean energy to reduce environmental 

pollution, which has led to a rapid increase in the number of NEVs. The natural advantage of NEV 

lies in its ability to significantly reduce greenhouse gas emissions and reduce dependence on fossil 

fuels, which is of great significance for achieving the country's "dual carbon" goals. Moreover, as 

an important demand response resource, NEV is playing an increasingly important role in the power 

system (EPS). They can provide flexible support for EPS, help balance grid load, and improve the 
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stability and efficiency of EPS [5]. 

However, with the rapid growth of NEV users, it has also brought a series of new challenges [6]. 

The dynamic driving behavior and random charging behavior of NEVs have complex coupling 

interactions with urban power grids and transportation networks [7]. This interaction may not only 

exacerbate traffic congestion, but also lead to an unstable increase in grid load. Therefore, it is 

necessary to design a reasonable charging scheduling strategy and carry out collaborative control of 

the charging process of NEV. At the same time, issues such as insufficient battery power and poor 

user charging experience are increasingly becoming bottlenecks that constrain the further 

development of NEVs. To solve these problems, it is necessary to start from multiple aspects. 

Firstly, it is necessary to further improve the charging infrastructure of NEV, increase the coverage 

and charging efficiency of charging stations, in order to meet the growing charging needs of users. 

Secondly, it is necessary to optimize the driving and charging behavior of NEVs through 

technological innovation and intelligent management methods, and reduce their impact on urban 

power grids and transportation networks [8]. 

RL is an important branch in the field of machine learning (ML), which focuses on enabling 

agents to continuously optimize their behavioral strategies through interactive learning with the 

environment, in order to achieve the goal of maximizing cumulative rewards or minimizing certain 

losses. In RL, agents interact with the environment by executing a series of actions and evaluate the 

effectiveness of their actions based on the reward signals returned by the environment. The goal of 

an intelligent agent is to learn a strategy that can guide it to choose the best action in different states 

to maximize long-term cumulative rewards. In the context of optimizing NEV charging strategies, 

RL can be used to train agents to learn how to make optimal charging decisions based on factors 

such as power grid status, charging station availability, user demand, and electricity prices. By 

interacting with the environment, intelligent agents can learn a charging strategy that maximizes 

long-term benefits, thereby improving the safety and stability of the power grid, reducing user 

charging time and costs, and improving the utilization rate of renewable energy. 

2. Feasibility Analysis of NEV Charging Load Control 

2.1 Feasibility 

The charging load of NEV has randomness in time and space, which is one of the key reasons 

why disorderly charging brings pressure and challenges to the power grid. Disorderly charging may 

lead to increased fluctuations in power grid load, and may even cause local power grid overload, 

which has adverse effects on the stability and safe operation of EPS. Therefore, when studying the 

NEV charging load prediction method, it is necessary to fully consider this random distribution 

feature. In order to effectively manage the charging load of NEV, achieving orderly charging 

control has become a necessary means. Ordered charging uses intelligent scheduling and control 

technology to adjust the charging time of NEVs reasonably and optimize their distribution over time. 

This can not only prevent a large number of NEVs from charging during peak hours, thereby 

preventing the accumulation of load peaks, but also effectively alleviate the adverse impact of NEV 

charging load on the power grid. It is very important to distinguish between office and residential 

areas in the assessment of the number of NEVs in a region. By collecting and analyzing these data, 

the number of NEVs can be more accurately evaluated or determined, providing strong support for 

subsequent charging facility planning and grid scheduling [9]. 

In addition, understanding the battery power characteristics of NEV is also crucial for charging 

load prediction and orderly control. This includes specific data on the charging power requirements 

and battery capacity of different vehicle models. In terms of NEV driving patterns, user decisions 

have a significant impact on the selection of charging locations. By collecting and analyzing user 
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driving and charging data, future charging needs can be more accurately predicted, providing more 

accurate basis for power grid scheduling and charging facility planning. The comprehensive 

consideration of the randomness of NEV charging load, orderly charging control, evaluation of 

regional NEV ownership, battery power characteristics, and driving patterns is the key to effectively 

addressing the challenges of NEV charging load. By comprehensively utilizing advanced prediction 

technology, intelligent scheduling, and control methods, the sustainable development of the NEV 

industry can be promoted, while ensuring the safe and stable operation of EPS [10]. 

2.2 Real Time Optimization Scheduling Scenario Modeling 

To improve the real-time efficiency of NEV charging management, adopting a layered 

management architecture based on NEV Aggregator (NEVA) is an effective solution. This 

architecture can optimize the flow of information and the exchange of energy, thereby improving 

the operational efficiency of the entire system. As shown in Figure 1, NEVA plays a crucial role in 

the hierarchical management architecture, serving as a "bridge" between the power grid and NEV, 

achieving the upload and release of information and the transfer of energy. Specifically, NEVA is 

responsible for transmitting real-time information of NEVs to the power grid, including but not 

limited to vehicle location, battery status, charging needs, etc., enabling the power grid to make 

more accurate and timely decisions. 

 

Figure 1: Real time phase architecture diagram 

At the same time, NEVA also transmits subsidy price information to the power grid and guides 

and controls the charging process to ensure that charging behavior meets the scheduling 

requirements of the power grid. Through NEVA's hierarchical management, NEVA can collect and 

process NEV charging information in real time, and transmit this information to the power grid in a 

timely manner, enabling the power grid to grasp NEV charging needs in real time and make more 

accurate scheduling. NEVA can flexibly adjust the charging behavior of NEVs according to the 

scheduling requirements of the power grid, including charging time, charging power, etc., to meet 

the load balancing needs of the power grid. Through the subsidy price transmission mechanism of 

NEVA, NEV users can be incentivized to charge during periods of low grid load, thereby reducing 

charging costs and improving the economic benefits of the grid. The hierarchical management 

architecture of NEVA can ensure accurate information transmission and stable energy exchange, 

thereby improving the operational reliability of the entire system. 
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3. Optimization Strategy for NEV Charging Based on RL Algorithm 

3.1 RL Algorithm 

RL algorithm is an effective algorithm for sequential decision problems, which learns and 

optimizes decision strategies through the interaction between agents and the environment. Figure 2 

shows the basic composition and process of the RL framework. In this framework, the agent 

observes the current state of the environment and selects an action to execute based on its strategy. 

After receiving this action, the environment will transition to a new state and generate a reward 

signal as feedback for the action. The goal of an intelligent agent is to continuously interact with the 

environment, adjust its strategies, and maximize the accumulated rewards throughout the entire 

interaction process. When an intelligent agent adopts a certain strategy and receives positive 

rewards from the environment, it means that the strategy is effective in the current environment, so 

the agent is more likely to adopt similar strategies in the future. This process of guiding strategy 

adjustment through reward signals is the core mechanism of RL. 

In the optimization of charging strategy for new energy vehicles, the Q-Learning algorithm is 

used to constantly update the state-action value function; 
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Here,  asQ ,  is the expected return of taking action a  in state S ,   is the learning rate, r  

is the immediate reward,   is the discount factor, 's  is the next state, and 'a  is the possible 

action in the next state. Every time the vehicle chooses the charging strategy, it will update the 

action value in the current state according to the instant reward and the expected future value. 

The state-action value function satisfies bellman equation, which expresses the relationship 

between the immediate reward that can be obtained after taking an action in the current state and the 

expected value after moving to the next state: 
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Under the given strategy  , the value of state-action pair  as,  is determined by the value of 

environmental dynamic  asrsp ,,'  and subsequent state-action pairs. 

Through the strategy gradient method, the parameters of charging strategy can be updated 

according to the state-action value function, thus optimizing the expected total reward: 

         
s a

saasQsJ 
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  ,                       (3) 

This is the basic formula for updating the strategy parameter   in the strategy gradient method, 

where  J  is the expected total reward and  s  is the steady distribution of the state s  

under the strategy  . In the process of charging, we will adjust the charging strategy according to 

the historical data and the current state to maximize the long-term benefits. 

The advantage function A  measures the advantage of taking a specific action in a given state 

compared with other actions: 

     sVasQasA   ,,                            (4) 

Where  sV 
 is a state value function. 

For the deterministic charging strategy, the deterministic strategy gradient is used to update the 
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strategy parameters to ensure that the selected charging action in a given state can maximize the 

long-term reward: 

        saasQsEJ as
 

   ,
~                     (5) 

For deterministic policy  s , this is the formula for updating policy parameters, where 
  

is the state access distribution. 

In the process of interacting with the environment, intelligent agents usually use a trial and error 

approach for learning. This means that intelligent agents need to try various different strategies and 

gradually improve their strategies by observing feedback from the environment. This learning 

approach does not require clear guidance or labels from the environment, making RL particularly 

suitable for complex environments that are difficult to model or obtain labels. 

 

Figure 2: RL algorithm structure 

3.2 Optimization Strategy 

In static charging scheduling scenarios, the optimization objective mainly focuses on minimizing 

the charging cost for NEV users. With the continuous development of smart grids and intelligent 

transportation systems, these two systems operate together, providing NEV users with a large 

amount of data related to the power grid and transportation network. These data can be used for 

NEV charging navigation, helping users find the best charging site and time to minimize charging 

costs. Using data-driven methods to model and mine the data of the "NEV Cluster Optimization 

Energy Storage Cloud Platform", obtain the driving and charging information required for NEV 

travel, urban charging station information, and dynamic traffic network information. Secondly, the 

RL method is applied to solve the multi-objective optimization of NEV charging navigation 

problem. Real time information of "vehicle station network" is mined as state input, and appropriate 

charging stations and charging paths are recommended for car owners through action execution. In 

this RL paradigm, intelligent agents (i.e. NEV users or charging navigation systems) gradually 

optimize their strategy for selecting charging stations through interactive learning with the 

environment. The vehicle by vehicle recommendation RL framework can flexibly cope with 

irregular charging requests and high-dimensional environmental characteristics. By continuously 

interacting and learning from the environment, intelligent agents can gradually improve the 

accuracy of their recommended charging stations, thereby helping NEV users minimize charging 

costs. 
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4. Conclusions 

To address the economic dispatch problem of power grid units with NEV randomness in the 

real-time stage, orderly charging has become an effective solution strategy. Ordered charging can 

dynamically adjust the charging power of each time period by planning and controlling the charging 

behavior of NEVs in a reasonable manner, thereby achieving optimal resource allocation and 

efficient energy utilization while meeting the operational requirements of the power grid and user 

sides. This article first analyzes the impact of NEV randomness on the economic dispatch of power 

grid units, and proposes a NEV charging optimization strategy based on the RL algorithm. Due to 

the uncertainty and randomness of NEV charging behavior, it will bring additional load fluctuations 

and scheduling difficulties to the power grid. Therefore, it is necessary to balance this uncertainty 

and ensure the stable operation and economy of the power grid through orderly charging. Using the 

RL algorithm, enable the intelligent agent to learn how to select the optimal action based on the 

current state in the interaction between the immediate power grid and the NEV system. Through 

continuous trial and error and learning, intelligent agents can gradually learn a charging strategy 

that can minimize grid load fluctuations and unit operating costs. Ordered charging is an effective 

strategy for solving the economic dispatch problem of power grid units with NEV randomness in 

the real-time stage. By constructing an optimized and orderly charging method, reasonable planning 

and control of NEV charging behavior can be achieved, thereby balancing grid load fluctuations, 

improving energy utilization efficiency, and meeting user charging needs. 
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