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Abstract: In this paper, by combining the ARIMA model and the BP neural network model, 

we establish an adaptive hybrid ARIMA-BP neural network model, which provides more 

accurate results for sunspot prediction. For solar activity prediction, in this paper, based on 

the multivariate nonlinear regression and BP neural network model, we utilize the differential 

evolutionary algorithm for model solving and obtain satisfactory hybrid model solving 

results. These results provide new perspectives and methods for solar activity prediction, and 

provide useful references and insights for research and practice in related fields. 

1. Introduction 

Solar activity, especially the appearance of sunspots on the surface of the sun, is a fascinating 

phenomenon of great significance for space weather forecasting and all aspects of the Earth's 

atmospheric conditions. Sunspots are temporary black spots on the solar sphere generated by a 

concentrated magnetic flux, leading to a local temperature reduction and convective suppression. 

Sunspots occur within active regions, often appear in pairs, have opposite magnetic poles, and exhibit 

periodic patterns consistent with a solar cycle of about 11 years. 

At present, some scholars have carried out research in related fields. Yuan et al [1] proposed a PV 

power prediction method combining two techniques. The method uses a fast correlation filtering 

algorithm to extract meteorological features with a strong correlation with PV power generation. The 

full systematic empirical modal decomposition method with an adaptive noise model is used to 

decompose the data into high and low-frequency components, which reduces the volatility of the data. 

Then, the long-short-term neural network and deep confidence network are combined into a new 

prediction model for each component. Finally, the proposed combined PV power prediction method 

is analyzed by examples and compared with other prediction methods. The results show that the 

proposed combined prediction method has high prediction accuracy. Chen et al [2] proposed a hybrid 

ARIMA-LR algorithm based on a Bayesian combinatorial model, which demonstrated outstanding 

performance in targeting the prediction of air cargo volume. The algorithm is adaptive with respect 

to the movement of the series and reacts quickly to sudden changes. Moustafa et al [3] used three 

single and hybrid models, Long Short-Term Memory (LSTM), Autoregressive Integrated Moving 

Average (ARIMA), and Seasonal Autoregressive Integrated Moving Average (SARIMA), for 
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forecasting the maximum number of blacks for cycles 25 and 26. The hyperparameters of the singular 

models were optimized using a Bayesian optimization approach. The LSTM-ARIMA hybrid model 

gave the best performance. The outstanding results of the LSTM-ARIMA model show the potential 

of the hybrid approach in improving the overall performance. In addition, the ability of the LSTM 

model to outperform the ARIMA model demonstrates the ability of the LSTM network to learn from 

time-series data. Dang et al [4] compared three important non-deep learning models, four popular 

deep learning models, and their five integrated models for predicting sunspot numbers. In particular, 

an integrated model called XGBoost- dl is proposed which uses XGBoost as a two-level nonlinear 

integration method to combine deep learning models. The proposed XGBoost-DL obtains the best 

predictive performance in the comparison (RMSE and MAE) and outperforms the best non-deep 

learning model SARIMA (RMS) and MAE), outperforming the best non-deep learning model 

SARIMA (RMSE) The best deep learning model, Informer (RMSE and MAE) and MAE), the best 

deep learning model Informer (RMSE) and NASA's predictions (RMSE) and MAE). Our XGBoost-

DL predicts a peak sunspot number of 133.47 in May 2025 for solar cycle 25 and 164.62 in November 

2035 for solar cycle 26, which is similar to NASA's predictions of 137.7 in October 2024 and 161.2 

in December 2034 Tabassum et al. [5] have estimated the sunspot number (SN) predictions over the 

recent solar cycle 24. To find the best model, moving average (MA), exponential smoothing (ES) and 

autoregression (AR) were used. In addition to this, in two other experiments, seasonal components 

were extracted using moving average (MA) and exponential smoothing (ES) and trend components 

were calculated with the help of simple regression analysis (RA). This exploration was solely to 

understand the differences between these models and the impact of these two components on the 

prediction of sunspots using moving average (MA) and exponential smoothing (ES). The forecast 

results reveal this difference and impact. Lessons are provided for other time series analysis (TSA) 

models to predict sunspot numbers. 

In this paper, sunspot numbers and periods are predicted by constructing adaptive ARIMA-BP 

neural networks and adaptive multiple nonlinear regression-BP neural network models. 

2. Influence factor prediction based on adaptive ARIMA-BP neural network modeling 

2.1. ARIMA modeling 

The essence of the ARIMA model is the combination of the difference operation with the ARMA 

model, denoted as ARIMA (p,d,q). The ARIMA model can be formulated as: 

𝜑(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃(𝐵)𝜀𝑡                                                      (1) 

where 𝑦𝑡 is a time series of historical observations, 𝑑 is the order of the difference, 𝑝 and 𝑞 are the 

autoregressive model order and the moving average of previous observations, and 𝜀𝑡 is a sequence of 

independent and identically distributed white noise with zero mean and constant variance. 𝑏 is the lag 

operator, and 𝐵 satisfies the following expression: 

𝐵𝑛𝑦𝑡 = 𝑦𝑡−𝑛                                                                  (2) 

𝜑(𝐵) = 1 − 𝜑1𝐵 −⋯− 𝜑𝑝𝐵
𝑝                                                  (3) 

𝜃(𝐵) = 1 − 𝜃1𝐵 −⋯− 𝜃𝑞𝐵
𝑞                                                   (4) 

The focus of building an ARIMA (p,d,q) model is on the selection of the three parameters of (p,d,q). 

d is the order of the difference, and the purpose of the difference is to change the original series of 

observations into a smooth time series. In this paper, Bayesian Information Criterion (BIC) is used to 

select p and q. The Bayesian Information Criterion can give a simple approximation of the logit model 

evidence as follows. 
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𝐵𝐼𝐶 = Accuracy⁡(𝑚) −
𝑝

2
log⁡𝑁                                                 (5) 

where p is the number of parameters and N is the number of data points. 

2.2. BP neural network modeling 

BP neural network is a multilayer feed-forward algorithm that consists of input, hidden and output 

layers. There is work signal and error signal propagation between layers. Figure 1 shows the neural 

network structure. 

 

Figure 1: Schematic diagram of BP neural network 

The principle of operation of the BP neural network is as follows: 

Denote the training set as {(𝒙1, 𝒚1), (𝒙2, 𝒚2), … , (𝒙𝑚, 𝒚𝑚)}, 𝒙𝑖 ∈ 𝑅𝑑 , 𝒚𝑖 ∈ 𝑅𝑙, and the output as 

𝒚̂𝑘 = (𝑦̂1
𝑘, 𝑦̂2

𝑘 , … , 𝑦̂𝑙
𝑘). Then there are: 

𝑦̂𝑗
𝑘 = 𝑓(𝛽𝑗 − 𝜃𝑗)                                                               (6) 

𝛽𝑗 = ∑𝑖=1
𝑛  𝑤𝑖𝑗𝑥𝑖𝑗                                                               (7) 

where 𝑤𝑖𝑗 is the connection weight of the ith neuron to the jth output. Remember that the error is 

when the network is on (𝒙𝑘 , 𝒚𝑘): 

𝐸𝑘 =
1

2
∑  𝑙
𝑗=1 (𝑦̂𝑗

𝑘 − 𝑦𝑗
𝑘)

2
                                                       (8) 

When the neural network completes the forward computation, the error value is obtained by 

subtracting the predicted value from the actual value, followed by backpropagation to adjust the 

weight threshold of the neural network. The iterative update formula for 𝒘 and 𝜽 is given by: 

𝛥𝜔ℎ𝑗 = 𝜂𝑔𝑗𝑏ℎ                                                                  (9) 

𝛥𝜃𝑗 = −𝜂𝑔𝑗                                                                  (10) 

𝑔𝑗 = −
𝜕𝐸𝑘

𝜕𝑦̂𝑗
𝑘 ∙

𝜕𝑦̂𝑗
𝑘

𝜕𝛽𝑗
= −(𝑦̂𝑗

𝑘 − 𝑦𝑗
𝑘) ∙ (𝑦̂𝑗

𝑘)′                                           (11) 

Where 𝑏ℎ is the input data of this neuron. Based on this, the neural network constantly adjusts the 

weights and thresholds during its training process, so that the prediction error of the neural network 

is constantly approaching 0. 

2.3. Prediction model construction based on the GABP neural network 

In this paper, the genetic algorithm was used to optimize the BP neural network, and the forward 

propagation process of the BP neural network was used to calculate the fitness of each individual in 

the iterative process, so as to improve the optimization efficiency of the algorithm. The design 

framework of the algorithm is shown in the following algorithm. 
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Algorithm: IGABP  

Input: training set independent variable 𝑥𝑡𝑟𝑎𝑖𝑛 , training set dependent variable 𝑦𝑡𝑟𝑎𝑖𝑛 , test set 

independent variable 𝑥𝑡𝑒𝑠𝑡 
Output: test set dependent variable 𝑦̂𝑡𝑒𝑠𝑡 
//Data normalization 

//𝑥′𝑡𝑟𝑎𝑖𝑛 is the normalized 𝑥𝑡𝑟𝑎𝑖𝑛, 𝑦′𝑡𝑟𝑎𝑖𝑛 is the normalized 𝑦𝑡𝑟𝑎𝑖𝑛 

// x_maxmin and y_maxmin are normalization information, used for back-normalization. 

[𝑥′𝑡𝑟𝑎𝑖𝑛,x_maxmin]=mapminmax(𝑥𝑡𝑟𝑎𝑖𝑛); // mapminmax is the min-max normalization function 

[𝑦′𝑡𝑟𝑎𝑖𝑛,y_maxmin]=mapminmax(𝑦𝑡𝑟𝑎𝑖𝑛); // Parameter definition. 

//Parameter definition 

Set BP neural network parameters: number of neurons in the hidden layer 𝑛𝑢𝑚ℎ𝑖𝑑𝑑𝑒𝑛 

Set the parameters of the genetic algorithm: iteration 𝑖𝑡𝑒𝑟, crossover rate 𝑃𝑐, variation rate 𝑃𝑚. 

Randomly initialize population 𝑝𝑜𝑝𝑢𝑖𝑛𝑖𝑡 
// Genetic algorithm part 

𝑝𝑜𝑝𝑢 = 𝑝𝑜𝑝𝑢𝑖𝑛𝑖𝑡 
for 𝑑 = 1 → 𝑖𝑡𝑒𝑟 do // iterate over the population 

crossover 

mutation 

for 𝑝 = 1 → 𝑠𝑖𝑧𝑒(𝑝𝑜𝑝𝑢, 1) do //traverse each individual in the current generation 

Direct computation of adaptation by forward propagation using activation functions 

end 

Selection to obtain new populations of 𝑝𝑜𝑝𝑢 

end 

// BP neural network 

𝑦̂𝑡𝑒𝑠𝑡=[ ] 

for 𝑝 = 1 → 𝑠𝑖𝑧𝑒(𝑝𝑜𝑝𝑢, 1) do // traverse each individual 

Decoding of popu(p,:) 

Initialize the weights and thresholds of the BP neural network using the values of popu(p,:) 

Run the BP neural network and calculate the predicted value 𝑦′ 
𝑦̂𝑡𝑒𝑠𝑡 = [𝑦̂𝑡𝑒𝑠𝑡; 𝑦′] 

end 

In the coding part of the genetic algorithm, IGABP continuously represents the weights and 

thresholds of the neural network as a vector for constituting the expression of individual genes. Since 

the structure of the network has been determined during the running of the algorithm, and the number 

of weights and thresholds to be determined have been determined, the length of the chromosome 

remains constant during the iteration process. 

In the part of the genetic algorithm that calculates the fitness of an individual, compared to GABP 

uses decoded individuals to initialize the neural network and then calculates the fitness based on the 

output of the training, IGABP starts from the principle of the process of forward propagation of the 

neural network and directly calculates the fitness of an individual, which eliminates the amount of 

computation required for the training and improves the optimization efficiency of the algorithm. 

Encoding and Decoding 

Assume that the neural network used in BAGP is shown in Figure 2: 
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Figure 2: Neural network structure 

Then, in determining the weights and thresholds of the network, the coding structure can be 

designed as: 

𝑤11 𝑤12 𝑤21 𝑤22 𝑤31 𝑤32 𝑏1 𝑏2 𝑣11 𝑣21 𝐵1 

In the chromosome designed in this paper, the gene loci are expressed in order: the weights 

between the input layer and the hidden layer, the threshold of the hidden layer, the weights between 

the hidden layer and the output layer, and the weights of the output layer, respectively. From this, the 

complete structure of a neural network can be determined. 

2.4. Modeling of Adaptive Hybrid ARIMA-BP Neural Networks 

For each prediction algorithm, some of the sequences are passed as a test set. The main idea of the 

hybrid algorithm designed in this article is that the better the performance in the past period's 

prediction the higher the weight in the future prediction and the higher the contribution to the 

predicted value. 

For the actual observations are written as: 𝒚𝒊 = {𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑡} . The predicted value of 

algorithm k is written as: 𝒚̂𝒌,𝒊 = {𝑦̂𝑘,1, 𝑦̂𝑘,2, 𝑦̂𝑘,3, … , 𝑦̂𝑘,𝑖}. The prediction error can be denoted as: 

𝑤𝑚𝑎𝑝𝑒𝑘,𝑖𝑑 =
∑|𝑦𝑖−𝑦̂𝑘,𝑖|

∑𝑦𝑖
                                                           (12) 

The total error of algorithm k can be formulated as: 

𝑤𝑚𝑎𝑝𝑒𝑘 = ∑ 𝑤𝑚𝑎𝑝𝑒𝑘,𝑖𝑑𝑖𝑑                                                      (13) 

In a hybrid algorithm, if an algorithm performs better in the test set, the weight is higher. The 

weight of algorithm k in the hybrid algorithm can be denoted as: 

𝜔𝑘 =
1/𝑚𝑎𝑝𝑒𝑘

∑ (1/𝑤𝑚𝑎𝑝𝑒𝑘)𝑘
                                                               (14) 

where 𝜔𝑘 is the weight of algorithm k in the hybrid algorithm. In each calculation of the hybrid 

prediction value, it is necessary to combine the prediction value of the ARIMA algorithm and BP 

neural network algorithm. Its calculation formula can be expressed as: 

2.5. Sunspot prediction results 

The results of the model solution are shown in Figure 3: 

18



 

Figure 3: Sunspot predictions will result 

From Figure 3, it can be found that the algorithm designed in this paper recognizes the periodic 

fluctuations better with better performance. 

 

Figure 4: Total number of sunspots per year 

Analyzing this in conjunction with the sunspot numbers shown in Figure 4, the solution is that the 

next solar cycle will begin in about 2031 and end in about 2042. 

3. Solar Activity Prediction Based on Adaptive Multiple Nonlinear Regression-BP Neural 

Network Modeling 

3.1. Modeling the relationship between time and sunspot number 

In this paper, we can build a regression analysis model on the relationship between time and 

sunspot number, and quantify the relationship between time and sunspot number through regression 

analysis. When the time is determined, the sunspot number can be obtained, and the solar activity can 

be further inferred. We can express the relationship as: 

yi = f(x1
i , x2

i , ⋯ , xj
i, θ1, θ2, ⋯ , θp) + σiε⁡(i = 1,2,⋯ , n)                              (15) 

where 𝑦  is the true value; 𝑖  denotes the ith group of data; f(x1, x2, ⋯ , xj, θ1, θ2, ⋯ , θp) is the 

multivariate nonlinear function, which denotes the deterministic part; x1, x2, ⋯ , xj is the independent 

variable; θ1, θ2, ⋯ , θp is the unknown model parameter of the multivariate nonlinear function; σiε⁡ is 

the stochastic part, ε is the random variable obeying N (0, 1) distribution; σi is the standard deviation 

of the random distribution of the ith set of data. 

To observe the data distribution, a line graph is plotted as shown in Figure 5: 
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Figure 5: Total Number of sunspots per month 

At present, most of the nonlinear regression models rely on empirical or experimental methods to 

select the regression model, but the empirical method will bring the problem of large errors, and the 

experimental method is time-consuming, but based on the experimental results can be better to select 

the correct model. Therefore, this paper determines the suitable regression model for the relationship 

through the experimental method: 

𝑦⁡ = ⁡𝑝1 ∗ 𝑆𝑖𝑛(𝑝2 ∗ 𝑥 + 𝑝3) + 𝑝4                                                 (16) 

3.2. Model solving based on differential evolutionary algorithm 

According to the above regression model, we need to determine more parameters totaling 4. To 

solve this kind of multi-parameter optimization problem, we can generally use the gradient descent 

method or genetic algorithm. However, because the gradient descent method often easily falls into 

the local optimal solution, resulting in a large deviation from the final result, while the genetic 

algorithm's mutation operation is to try to find a better choice by generating a new solution, when it 

comes to the later stages of the optimization, the entire population may fall into the local optimum. 

At this time, the solution needs to be able to run out of the local optimal circle, and "ineffective" 

mutation can not achieve the purpose. Therefore, in this paper, we choose the differential evolutionary 

algorithm, which can better solve the global optimal problem, to optimize the solution of 𝜃1, 𝜃2, ⋯ , 𝜃4. 

The following are the solution steps: 

Population initialization 

The population size M is chosen as 100, and M individuals are randomly and uniformly generated 

in the solution space. 

𝑋𝑖(0) = (x𝑖,1(0), 𝑥𝑖,2(0), 𝑥𝑖,3(0), … , 𝑥𝑖,𝑛(0)) , 𝑖 = 1,2,3, … ,𝑀                    (17) 

Among them. 

𝑥𝑖,𝑗(0) = 𝐿𝑗−min + rand(0,1) (𝐿𝑗−max − 𝐿𝑗−min), 𝑖 = 1,2,3, … ,𝑀, 𝑗 = 1,2,3, … , 𝑛    (18) 

Mutation. 

In the g-th iteration, three individuals 𝑋𝑝1(𝑔), 𝑋𝑝2(𝑔), 𝑋𝑝2(𝑔) are randomly selected from the 

population with 𝑝1 ≠ 𝑝2 ≠ 𝑝3 ≠ 𝑖, generating a vector of variation: 

𝐻𝑖(𝑔) = 𝑋𝑝1(𝑔) + 𝐹 ⋅ (𝑋𝑝2(𝑔) − 𝑋𝑝3(𝑔))                                         (19) 

where 𝛥𝑝2,𝑝3(𝑔) = 𝑋𝑝2(𝑔) − 𝑋𝑝3(𝑔) is the difference vector and 𝐹 is the scaling factor. 

The three randomly selected individuals in the variance operator are ranked from best to worst to 

obtain 𝑋𝑏, 𝑋𝑚, 𝑋𝑤, corresponding to the fitness 𝑓𝑏, 𝑓𝑚, 𝑓𝑤, the variance operator reads: 

𝑉𝑖 = 𝑋𝑏 + 𝐹𝑖(𝑋𝑚 − 𝑋𝑤)                                                      (20) 

Also, the value of F varies adaptively according to the two individuals generating the difference 
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vector: 

𝐹𝑖 = 𝐹𝑙 + (𝐹𝑢 − 𝐹𝑙)
𝑓𝑚−𝑓𝑏

𝑓𝑤−𝑓𝑏
, 𝐹𝑙 = 0.1, 𝐹𝑢 = 0.9                                    (21) 

The mutation strategy is: 

𝐷𝐸/⁡𝑟𝑎𝑛𝑑⁡/1: 𝑉𝑖(𝑔) = 𝑋𝑝1(𝑔) + 𝐹(𝑋𝑝2(𝑔) − 𝑋𝑝3(𝑔))                         (22) 

𝐷𝐸/⁡𝑏𝑒𝑠𝑡⁡/1: 𝑉𝑖(𝑔) = 𝑋best (𝑔) + 𝐹(𝑋𝑝1(𝑔) − 𝑋𝑝2(𝑔))                      (23) 

𝐷𝐸/⁡𝑐𝑢𝑟𝑟𝑒𝑛𝑡⁡𝑡𝑜⁡𝑏𝑒𝑠𝑡/1 ∶ 𝑉𝑖(𝑔) = 𝑋𝑖(𝑔) + 𝐹(𝑋best (𝑔) − 𝑋𝑖(𝑔)) + 𝐹(𝑋𝑝1(𝑔) − 𝑋𝑝2(𝑔)) (24) 

𝐷𝐸/⁡𝑏𝑒𝑠𝑡⁡/2: 𝑉𝑖(𝑔) = 𝑋best (𝑔) + 𝐹(𝑋𝑝1(𝑔) − 𝑋𝑝2(𝑔)) + 𝐹(𝑋𝑝3(𝑔) − 𝑋𝑝4(𝑔))      (25) 

𝐷𝐸/⁡𝑟𝑎𝑛𝑑⁡/2: 𝑉𝑖(𝑔) = 𝑋𝑝1(𝑔) + 𝐹(𝑋𝑝2(𝑔) − 𝑋𝑝3(𝑔)) + 𝐹(𝑋𝑝4(𝑔) − 𝑋𝑝5(𝑔))      (26) 

Crossover: 

𝑣𝑖,𝑗 = {
ℎ𝑖,𝑗(𝑔), rand⁡(0,1) ≤ 𝑐𝑟

𝑥𝑖,𝑗(𝑔),  else 
                                             (27) 

where cr ∈ [0,1] is the crossover probability, taken as 𝑐𝑟⁡ = ⁡0.7. 

Select: 

𝑋𝑖(𝑔 + 1) = {
𝑉𝑖(𝑔), 𝑓(𝑉𝑖(𝑔)) < 𝑓(𝑋𝑖(𝑔))

𝑋𝑖(𝑔),  else 
                                 (28) 

The model parameter settings are shown in Table 1. 

Table 1: Differential evolutionary algorithm parameter settings 

Parameter value 

Number of populations 100 

Crossing rate 0.7 

Variation rate 0.85 

Allowable error of convergence 10−10 

Convergence tolerance judgment number 1000 

Maximum allowable number of iterations 30000 

When the iteration is over, the better combination of 𝑝1, 𝑝2, ⋯ , 𝑝𝑝 can be found. 

Through the above iterative optimization, we found the optimization results for four parameters 

and plotted the fitted graphs after the optimization results. The results are: 

𝑝1 = 26.9884001822349                                                    (29) 

𝑝2 = 0.0444929670892593                                                (30) 

𝑝3 = −1.90076018991413                                                 (31) 

𝑝4 = 81.9846295969476                                                   (32) 
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Figure 6: Fitting of regression model results based on differential evolutionary algorithm solution 

In Figure 6, the blue line shows the predicted values and the red line shows the fitted values. From 

the figure, we can analyze the model results solved by this algorithm. 

3.3. Hybrid modeling results 

The results of the solution are shown in Figure 7: 

 

Figure 7: Monthly sunspot totals 

Draw a localized map for analysis: 

 

Figure 8: Bureau of Sunspot Quantity Prediction 
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From Figure 8, it can be seen that the maximum occurs in April 2034, which corresponds to a 

black volume of 100.5. 

4. Conclusions 

The aim of this study is to explore the prediction of influencing factors based on the adaptive 

ARIMA-BP neural network model and the prediction of solar activity based on the adaptive multiple 

nonlinear regression-BP neural network model. Through the establishment of ARIMA and BP neural 

network models as well as the prediction model construction of the GABP neural network, we 

successfully established the adaptive hybrid ARIMA-BP neural network model, which provides a 

new solution for sunspot prediction. 

In Chapter 2, we delve into the ARIMA model building and BP neural network model building. 

The construction of these models lays a solid foundation for the subsequent prediction models. 

Through the construction of the prediction model based on the GABP neural network, we combined 

the neural network technology with the prediction model and achieved satisfactory results. Finally, 

we built the adaptive hybrid ARIMA-BP neural network model, which provides more accurate 

prediction results for sunspot prediction. 

Chapter 3 focuses on solar activity prediction based on an adaptive multiple nonlinear regression-

BP neural network model. We first modeled the relationship between time and the number of sunspots 

and applied a differential evolutionary algorithm to solve the model. Subsequently, we constructed a 

BP neural network prediction model and performed hybrid model solving. The successful completion 

of these steps provides a new perspective and method for solar activity prediction. 

Through this study, we not only explored the prediction model of solar activity in depth but also 

successfully combined the traditional ARIMA model and the BP neural network model, which 

brought new ideas and methods for sunspot prediction and solar activity prediction. Our results 

provide useful references and insights for research and practice in related fields and also point out 

new directions for future research. 

In summary, this study has achieved useful results in the field of solar activity prediction and 

provided new ideas and methods for the improvement and optimization of prediction models. We are 

satisfied with the research results of the adaptive ARIMA-BP neural network model and adaptive 

multiple nonlinear regression-BP neural network model, and we are looking forward to future in-

depth exploration in this field. 
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