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Abstract: Weld defect detection is a crucial step in industrial production processes. To 

effectively identify these defects, the X-ray inspection method based on non-destructive 

testing is commonly employed. Addressing the challenges of limited sample size and class 

imbalance in X-ray images, this study proposes an enhanced diffusion model algorithm to 

augment samples, thereby improving the defect detection capability for rare categories. 

Experimental results prove the enhanced dataset's detection performance surpassing that of 

the original dataset. The improvement is notable, with a 5.1% enhancement on the WDD 

dataset. This paper presents a viable data augmentation solution for small-sample weld 

seam defect detection. 

1. Introduction 

Welding plays a crucial role in industrial production, with the manufacturing and processing of 

most metal products relying on welding technology. However, practical production often 

encounters various defects in welding structures, such as porosity, posing a significant threat to 

product quality. Therefore, quality inspection of welding components becomes urgent and 

necessary. Among the various methods, X-ray inspection [1] stands out as one of the most widely 

adopted techniques in the industry. Nevertheless, traditional X-ray welding seam defect detection 

methods heavily rely on manual film inspection, which is inefficient and has a high leakage rate, 

making it unable to meet the requirements of modern production. 

Currently, artificial intelligence technologies, represented by deep learning, have found 

widespread applications in various fields such as natural language processing, image recognition, 

speech recognition, autonomous driving, and intelligent manufacturing. In the field of defect 

detection, defect detection based on deep learning has garnered attention due to its strong 

adaptability, proficiency in extracting complex features, and high accuracy. Although deep learning 

can improve the accuracy of weld seam defect detection, it requires a substantial amount of training 

and test data. 

However, in the field of weld seam defect detection, obtaining a sufficient quantity of industrial 

sample data is quite challenging, making the exploration of effective data augmentation methods 

crucial. Up to now, the most common and proven effective data augmentation methods primarily 
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involve traditional geometric and optical transformations, such as translation, rotation, flipping, 

scaling, distortion, brightness, and color adjustments. Despite the adoption of these traditional data 

augmentation methods, overfitting issues persist, as these minor modifications to images hardly add 

additional content information, thus failing to address the aforementioned problems effectively. 

Another data augmentation method involves synthesizing images using generative models. 

Typical generative models include Generative Adversarial Networks (GAN) [2], Variational 

Autoencoders (VAE) [3], and Diffusion Models [4]. 

The Diffusion Model stands out as the latest prominent representative in the field of generative 

models. Diffusion models and their variants have achieved significant success in image generation, 

with widespread applications in medical image synthesis. However, their full potential has yet to be 

realized in the field of vision-based non-destructive detection. 

This study aims to explore the applicability of the Diffusion Model in augmenting weld seam 

data by enhancing the characteristics of X-ray welding seam images and combining other methods. 

The goal is to augment the dataset of welding seam defect images, thereby improving defect 

detection accuracy.  

2. Related work 

In order to construct applicable deep learning models, avoiding overfitting is a focal point of 

research. Data augmentation is a powerful method for achieving this goal, artificially increasing the 

size of the training dataset by distorting or oversampling the data. Augmented data represents a 

more comprehensive set of potential data points, thereby minimizing the distance between the 

training, validation, and future test sets. Data distortion augmentation involves transforming 

existing images while preserving their labels. This includes geometric and color transformations, 

random erasure [5], adversarial training [6], and neural style transfer [7], among other enhancement 

methods. Oversampling augmentation involves creating synthetic instances and adding them to the 

training set, incorporating methods such as image blending [8], feature space augmentation [9], and 

generative models. 

Geometric and color transformations based on image data were among the earliest methods used 

for data augmentation. Although these methods are simple and common, excessive usage can lead 

to the generation of overly homogeneous data samples, including many samples with little practical 

application value. Noise injection-based data augmentation involves randomly adding noise, such as 

Gaussian noise, to the original images. Moreno-Barea et al. [10] tested noise injection on nine 

datasets from the UCI repository, and the results indicated that adding noise to images can enhance 

the robustness of Convolutional Neural Networks (CNN). 

Generative modeling is an effective data augmentation method that utilizes generative models to 

synthesize new artificial samples while preserving features similar to those in the original dataset. 

Bowles et al. [11] describe generative modeling as a way to "unlock" additional information from 

the dataset. Frid-Adar et al. [12] tested the effectiveness of DCGANs in generating medical images 

of liver lesions. They observed that, in addition to classical data augmentation, the inclusion of 

samples generated by DCGAN could further enhance detection accuracy. Jiangsha et al. [13], with a 

limited set of extracted weld seam defect images and manually drawn labels, utilized GAN to 

generate weld defect images, which achieved a 10% performance improvement on the GDXray [14] 

dataset higher than traditional data augmentation methods alone. 

However, GANs suffer from training instability and demand for extensive data, making them 

potentially suboptimal for constrained datasets. The Diffusion Model is a novel generative model 

that surpasses GANs regarding result quality and training stability, providing a new approach to 

enhancing image datasets to drive machine vision systems. The diffusion model consists of two 
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components: a forward diffusion process and a reverse inverse diffusion process. During the 

diffusion process, Gaussian noise is gradually added to the image, transforming it into random noise. 

In the reverse diffusion process, this procedure is reconstructed to obtain a new image. 

Introducing the diffusion model into weld defect image data augmentation represents a novel 

direction. This paper, proposes a diffusion model that improves the noise estimation network to 

expand the weld defect image dataset. IDDPM [15] is a relatively classic diffusion model. 

Compared to the original diffusion model, it mainly improves in optimizing the Noise Schedule, 

using importance sampling, and improving sampling speed. In this paper, we further improve the 

IDDPM model according to the characteristics of weld seam images. 

3. Materials & Methods 

3.1 Improved Noise Estimation Network 

Currently, in the image generation task based on the diffusion model, the noise estimation 

network (NE-Net) draws inspiration from the core structure of Convolutional Neural Networks 

(CNN) and adopts a U-Net architecture [16]. The U-Net network is an encoder-decoder structure 

where the encoder captures low and high-level features, and the decoder combines these features to 

generate the final image result. Skip connections play a crucial role in this architecture, aiding in the 

transmission of spatial information lost during pooling operations, thereby restoring complete 

spatial resolution in the encoding-decoding process. However, for U-Net, using a simple skip 

connection scheme to model global multiscale contexts without considering semantic differences, 

may not always achieve the desired results. Therefore, the Channel-wise Cross Fusion Transformer 

(CCT) module [17] is proposed to improve U-Net, which guided the fused multiscale channel-wise 

information to effectively connect to the decoder features, replacing simple skip connections.  

 

Figure 1: Improved noise estimation network 

This paper presents an improved version of the noise estimation network, called Channel-wise 

Cross Fusion Transformer for Noise Estimation (NE-CCT), to enhance the model's performance in 

image generation tasks, as illustrated in Figure 1. By embedding the CCT module in skip 

connections, the model's ability to express image features is enhanced. To further increase the 

receptive field without increasing parameters, this paper adopts dilated convolutions with varying 
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dilation rates in the encoder instead of traditional convolution operations [18]. Therefore, this paper 

introduces a Coordinate Attention (CA) module [19] in the bottom two layers of the NE-CCT 

network. These improvement measures aim to optimize the performance of the noise estimation 

network, making it better suited for image generation tasks, enhancing its ability to handle multi-

scale information, reducing computational burden, and improving the capture of image details.  

3.2 Weld Defect Detection Dataset WDD 

The Weld Defect Dataset (WDD) is constructed from 994 X-ray images of defective weld seams 

collected from a collaborative company. These images have a resolution of 400×600 and encompass 

four categories of defects: porosity, incomplete penetration, cracks, and undercut. We partitioned 

the dataset, with 723 images utilized for the training set, 121 images for the validation set, and 150 

images for the test set. 

4. Results 

This section will evaluate the proposed improved diffusion model in terms of both the quality of 

generated images and its effectiveness in data augmentation for defect detection tasks. 

During the data augmentation experiment, only the training set was augmented, while the test set 

remained unchanged. To validate the effectiveness of the synthetic defect images generated by the 

proposed data augmentation method, it was necessary to select a mature and stable detection 

network. In this study, we opted for YOLOv5s as the defect detection network, a widely used and 

proven-effective model.  

For the specific application of weld seam defect detection and recognition, we employed several 

traditional augmentation methods, including random rotation (-10°to 10°), random Horizontal 

flipping (with a probability of 0.5), and Gaussian blur. Furthermore, we compared the combination 

of our method with traditional methods. The experimental results are presented in Table 1. 

The results indicate that applying our method alone achieves the best recall. Combining our 

method and random rotation is the most effective augmentation method overall. Compared to the 

baseline dataset, it resulted in a 7.9% accuracy improvement, a 5.5% recall improvement, and a 

5.1% mAP improvement. It is worth noting that the combination of our proposed method with 

traditional methods shows a significant improvement in the comprehensive metric mAP compared 

to using a single traditional method.  

Table 1: Performance comparison of defect detection of YOLOv5s on the WDD dataset augmented 

by different methods 

 Precision Recall mAP 

Baseline dataset 0.616 0.554 0.581 

IDDPM 0.452 0.667 0.604 

ours 0.556 0.678 0.613 

Horizontal flip 0.575 0.64 0.568 

Random Rotation 0.720 0.525 0.597 

Gaussian noise 0.553 0.541 0.579 

Ours + Horizontal flip 0.593 0.631 0.603 

Ours + Random Rotation 0.695 0.609 0.632 

Ours + Gaussian noise 0.641 0.542 0.582 
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5. Conclusions 

We found that by improving the skip-layer connection part of the noise prediction network in the 

diffusion model, we can effectively improve the quality of samples generated by the diffusion 

model, which is proven in the experimental results. In addition, we introduced the diffusion model 

into the small-sample image data augmentation task, and using the images generated by the 

diffusion model for data augmentation effectively alleviated the overfitting problem in the detector. 

In addition, the proposed method is compatible with traditional data augmentation techniques, and 

their combined use significantly improves the overall detection performance of the model. Our 

method still has shortcomings, such as a large number of parameters and long computation time. 

Improving the computational efficiency of the model is an important area for future improvement. 
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