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Abstract: To improve the authenticity and reliability of emissions accounting for embodied 

carbon and promote the sustainable development of the PI in the future, this article has 

taken Shanghai as the object and combined input-output models to conduct in-depth 

research on its embodied carbon emissions in the PI. This article first analyzed the current 

development status of the PI in Shanghai, and explored it from the perspectives of energy 

supply and carbon emissions. Then an embodied carbon emission accounting model was 

constructed based on the non-competitive input-output table. Finally, through factor 

analysis, the changes in the emissions of embodied carbon were analyzed. This article 

conducted experiments from two perspectives: emission accounting and scenario 

prediction, so that the effectiveness of the input-output model in the emission analysis of 

embodied carbon in the PI in Shanghai can be verified. The results show that from the 

proportion of hidden carbon emissions in the power industry to the total hidden carbon 

emissions in the social industry, the highest proportion of hidden carbon emissions in the 

power industry can reach 43.69%. The conclusion indicated that the input-output model 

could achieve objective and accurate accounting of embodied carbon emissions in the PI, 

which could help to promote green development of the PI.  

1. Introduction 

With the intensification of global environmental issues such as air pollution, the role and impact 

of embodied carbon emissions in sustainable development are becoming increasingly prominent 

[1-2]. The power industry (PI is used instead of expression in the following text) in Shanghai 

occupies a special position in the city’s carbon emissions, with a wide supply chain. Embodied 

carbon emissions from the industry have a large impact on overall emissions. Traditional analysis 

methods lack comprehensiveness and accuracy, making it difficult to comprehensively consider the 

emissions of embodied carbon at all stages of the entire lifecycle of power production and supply. 

In the development of macroeconomic analysis, input-output analysis methods have achieved 

considerable achievements in various professional fields such as industrial structure analysis and 

economic policy evaluation [3]. It has strong comprehensiveness and systematicity, and can 

comprehensively consider the interrelationships between various parts of the industry system on the 
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basis of providing multi-level data information. Applying it to the analysis of embodied carbon 

emissions in the PI, comprehensively analyzing all aspects of power production and supply, can 

provide more accurate carbon emission management strategies, and has important practical value 

for promoting sustainable energy and low-carbon development. 

Quantifying and evaluating carbon emissions at each stage of the power production process is an 

important way to understand the contribution of power production to carbon emissions [4-5]. Wang 

Haikun applied the Monte Carlo method and the Kuznets function to simulate the peak per capita 

emissions, and studied the carbon emissions of 50 cities in China during 2000-2016. His results 

showed that despite the different carbon emission trajectories of individual cities, there was a strong 

relationship between per capita emissions and real Gross Domestic Product (GDP) per capita in 

individual cities [6]. Yang Fuyuan applied the logarithmic mean Divisia index (LMDI) method to 

identify the properties of factors affecting carbon emission changes. His results suggested that 

economic activity had been the leading factor in driving the growth of carbon emissions from 

electricity [7]. Alajmi Reema Ghazi used a structural time series model and LMDI to estimate 

long-run elasticity. His results suggested that GDP, power generation, and population variables had 

a significant impact on carbon emissions [8]. Kwakwa Paul Adjei conducted a regression analysis 

using autoregressive distributed lags and fully corrected ordinary least squares estimation based on 

the World Bank’s 2020 time series data. His results presented that the power crisis had a positive 

impact on carbon emissions [9]. Although existing analytical methods have certain quantitative 

capabilities for the carbon emissions and environmental impact of the PI, the data analysis results 

obtained still cannot fully reflect the actual carbon emissions of the industry. 

The development of input-output analysis methods has provided more possibilities for the 

comprehensive analysis of carbon emissions in the PI. Fan Fengyan analyzed the spatial 

characteristics of carbon emission intensity in the power sector by adopting the Moran index for 30 

provinces in China, and compared the transfer of carbon emissions from electricity at the provincial 

level in China during 2010 and 2015 based on a multi-regional input-output table. His results 

demonstrated that between 2010 and 2015, carbon emissions from electricity increased in 20 

provinces and carbon intensity decreased in 21 provinces [10]. De Chalendar Jacques A applied an 

economic input-output model to track the carbon emissions of the power grid. The analysis of 

multiple publicly available datasets has demonstrated the accuracy of input-output model analysis 

[11]. Ma Jia-Jun used a structural decomposition analysis method based on input-output subsystem 

model to explore the sources of incremental emissions in China’s PI from 2007 to 2015 [12]. 

Input-output analysis can fully consider the differences in various components of the PI and the 

complexity of embodied carbon emissions, achieving objective and comprehensive analysis of 

carbon emissions, but most studies still have certain limitations in terms of analytical accuracy. 

To improve the objectivity and accuracy of the analysis of embodied carbon emissions and 

provide effective basis for the sustainable development of the PI, this article combined input-output 

models to study the emissions of embodied carbon in the PI in Shanghai. Using the electricity 

energy data in Shanghai from 2002 to 2011 as the sample object, embodied carbon emission 

accounting and scenario prediction were conducted. In terms of emissions accounting for embodied 

carbon, compared to 2002, its emissions in 2011 only increased by 1.7648 million tons. Although its 

trend of change was not significant, the emissions were at a relatively high level, and the highest 

proportion of the total emissions in the social industry could reach 43.69%. From the contribution 

ratio calculation results, it can be found that the energy production results had a large impact on the 

emissions of embodied carbon in the Shanghai’s PI in 2002, 2007, and 2011. In terms of scenario 

prediction, compared to the low-speed adjustment in Scenario 3, the emissions of embodied carbon 

were lower under the high-speed adjustment of energy production structure, electricity consumption 

intensity, and energy consumption rate. In the analysis of embodied carbon emissions, input-output 
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models can provide more objective and reliable support for the sustainable development of the PI, 

and effectively promote the high-quality development of emission reduction work in the PI. 

2. Embodied Carbon Emissions in Shanghai’s Power Industry 

2.1 Development of Shanghai’s Power Industry 

Embodied carbon emissions refer to the direct or indirect emissions of carbon dioxide generated 

during the production stage of manufacturing a specific product or providing a certain service [13]. 

The survey results of the China Energy Report (2008): CO2 Emissions Research show that from the 

1970s to the early 21st century, carbon dioxide emissions from the power, industrial, and 

transportation industries dominated the total global industry emissions, accounting for about 70% of 

the total emissions [14-15].  

At present, with the continuous deepening of urban construction in Shanghai, the scale of 

industrial development is expanding. Its electric PI is developing rapidly, and the demand for 

energy and electricity is also rising. The cumulative installed capacity is showing an increasing 

trend year by year, with thermal power generating units accounting for about 85% of the installed 

power capacity [16]. On the one hand, from the medium and long-term perspective of the PI, there 

is significant pressure on energy supply and demand in Shanghai. As the carbon peaking and carbon 

neutrality goals (dual carbon goals) are put forward, the development of energy in Shanghai 

Petrochemical is restricted, which further increases the pressure on the medium and long-term 

electricity demand and supply in Shanghai [17].  In terms of achieving the dual carbon goals, 

provinces and cities in the central and eastern regions are facing enormous pressure, and the 

electricity load of other provinces and cities around Shanghai far exceeds that of Shanghai. Relying 

solely on the coordinated allocation and transmission of electricity in east China to support 

Shanghai and achieve the dual carbon goals is very difficult [18-19]. On the other hand, the 

technological system for carbon emissions has not yet been fully established. Further improvement 

is needed in the upstream and downstream of the industrial chain in Shanghai’s PI, support for the 

industrial chain and surrounding services, and integrated development of the industrial chain and 

innovation chain. 

2.2 Construction of Input-Output Model 

The input-output analysis method is an economic model that evaluates the interdependence 

among various departments in the economic system [20]. According to the input-output table, 

Equations (1) and (2) can be constructed: 

{

𝑥11 + 𝑥12 + ⋯ + 𝑥1𝑛 + 𝑌1 = 𝑋1

𝑥21 + 𝑥22 + ⋯ + 𝑥2𝑛 + 𝑌2 = 𝑋2
⋯

𝑥𝑛1 + 𝑥𝑛2 + ⋯ + 𝑥𝑛𝑛 + 𝑌𝑛 = 𝑋𝑛

                         (1) 

{

𝑥11 + 𝑥12 + ⋯ + 𝑥𝑛1 + 𝐹𝑉𝜎1 = 𝐹1

𝑥12 + 𝑥22 + ⋯ + 𝑥𝑛2 + 𝐹𝑉𝜎2 = 𝐹2
⋯

𝑥1𝑛 + 𝑥2𝑛 + ⋯ + 𝑥𝑛𝑛 + 𝐹𝑉𝜎𝑛 = 𝐹𝑛

                      (2) 

Assuming 𝜎𝑖𝑗 = 𝑥𝑖𝑗/𝑥𝑗 and 𝜎𝑖𝑗 ≥ 0, Equation (1) can be expressed as: 

𝜎𝑋 + 𝑌 = 𝑋                                  (3) 

𝜎𝑖𝑗 represents the direct consumption coefficient, which is the required input from various 
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departments when the product output of the PI reaches a certain level. In the input-output table, the 

change in energy consumption is intuitively reflected in the change of the value of 𝜎𝑖𝑗. Based on 

this condition, the impact of changes in energy consumption on the production of the electricity 

industry in the region when the demand for electricity reaches a certain level can be calculated. 

Vector 𝑌 represents the vector of terminal demand, which is the final demand vector, while vector 

𝑋 represents the output of the entire sector in the PI. 

The embodied carbon emission matrix of Shanghai’s PI can be constructed on the basis of the 

input-output table to realize the embodied carbon emission accounting. In the specific calculation 

process, the overall equivalence relationship between input and output is first established, which is 

expressed as “intermediate use”+“final demand”=“total output”. Its expression is as Equation (4): 

∑ 𝑋𝑗 + 𝑌𝑖 = 𝑋𝑖 , 𝑖 = 1,2,𝑚+𝑛
𝑗=1 ⋯ 𝑚 + 𝑛                       (4) 

The relationship between the complete consumption coefficient 𝜏 and the direct consumption 

matrix can be expressed as Equation (5): 

𝜏 = (𝐼 − 𝜎)−1 − 𝐼                               (5) 

In Equation (5), 𝐼 represents the identity matrix; (𝐼 − 𝜎)−1 represents the direct and indirect 

investment required by department 𝑖 when department 𝑗 manufactures a product or service. On 

this basis, the equation is combined with carbon emission intensity to construct an embodied carbon 

emission input-output model for the PI, which is represented as: 

𝐶𝑖 = 𝜑(𝐼 − 𝜎∗)−1𝑌∗                               (6) 

In Equation (6), the sum of the row vectors of 𝐶𝑖 represents the direct and indirect carbon 

emissions generated by the PI in the production or service process. The sum of its column vectors 

represents the embodied carbon emissions generated by the industry during the production process 

due to the consumption of electricity products or services. The diagonal element of 𝜑 is 𝜑𝑖, which 

represents the direct carbon emission intensity of various sectors in the PI. 𝑌∗ uses cumulative 

vectors to measure the embodied carbon emissions from the perspective of the power industry 

production chain, while in the model, it measures the various dimensional vectors of terminal 

demand after excluding imports. 

After excluding internal and external factors, the calculation equation for the non-competitive 

direct consumption coefficient matrix 𝜎∗ is expressed as: 

σ∗ = (I − μ) × σ                                  (7) 

Among them, the calculation method for element 𝜇𝑖𝑗 in matrix 𝜇 is: 

μij =
Iμi

Ot+Iμi−Ev
, i = 1,2, ⋯ , n                            (8) 

From this, the non-competitive complete consumption coefficient matrix can be obtained by 𝜎∗: 

𝜏∗ = (𝐼 − 𝜎∗)−1 − 𝐼                                 (9) 

On the basis of embodied carbon emission accounting under input-output modeling, this article 

analyzes the impact of carbon emission coefficient, energy consumption rate, energy production 

structure, electricity consumption intensity, industrial structure, per capita household electricity 

consumption, per capita GDP, and population on the emissions of embodied carbon in the PI. To 

reduce computational complexity and improve the feasibility of model accounting, this article takes 

coal, oil, and natural gas as initial energy inputs (𝑖=1, 2, 3), and agriculture, industry, and urban 

residential electricity as power consumption sectors (𝑗=1, 2, 3). In the PI of Shanghai, the variation 

in emissions of embodied carbon can be expressed by Equation (10): 
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∆Ec = cn − c0 = ∆ct + ∆st + ∆rt + ∆It + ∆αt + ∆p + ∆GDP + ∆pn         (10) 

Among them, the definition of variables in Equation (10) is shown in Table 1: 

Table 1: Definition of variables in Equation (10) 

Sequence Variables Meaning 

1 cn Carbon emissions of the power industry in the n-th year 

2 c0 Carbon emissions of the power industry in the base year 

3 ∆ct Emission coefficient contribution value 

4 ∆st Contribution value of energy consumption rate 

5 ∆rt Contribution value of energy production structure 

6 ∆It Contribution value of electricity consumption intensity 

7 ∆αt Contribution value of industrial structure 

8 ∆p 
Contribution value of per capita electricity consumption 

to daily life 

9 ∆GDP Contribution value of per capita GDP 

10 ∆pn Contribution value of population 

According to the variables in Table 1, when the contribution of the influencing factor is greater 

than 0, it indicates that this factor has a positive driving effect on the changes in embodied carbon 

emissions in the PI, representing an increase in total embodied carbon emissions. When the 

contribution degree of the influencing factor is below 0, it indicates that this factor has a negative 

driving effect on the changes in embodied carbon emissions in the PI, indicating that it has an 

inhibitory effect on the growth of total embodied carbon emissions. 

3. Accounting and Scenario Prediction of Embodied Carbon Emissions in Shanghai’s Power 

Industry 

To analyze the effectiveness of input-output based research on embodied carbon emissions in the 

Shanghai’s PI, this article takes Shanghai’s electricity energy data as the sample object and conducts 

embodied carbon emission accounting and scenario prediction. 

3.1 Data Sources 

This article uses the Shanghai Statistical Yearbook and the China Energy Statistical Yearbook as 

the main sources to conduct statistical analysis on the electricity consumption data of the main 

consumer sectors in Shanghai’s PI from 2002 to 2011, as shown in Table 2. The input-output table is 

sourced from the National Bureau of Statistics. Based on input-output theoretical analysis, this 

article mainly focuses on carbon dioxide emissions, and calculates the carbon emission level of 

Shanghai based on the calculation standards of the IPCC National Greenhouse Gas Inventory 

Guidelines (2006), as shown in Table 3. 

It can be obtained from Table 2 that the trend of electricity consumption in the agricultural 

consumption sector in Shanghai’s PI from 2002 to 2011 was quite complex. Its electricity 

consumption continued to decline from 2003 to 2008, and showed a significant growth trend since 

2008. Except for a downward trend from 2008 to 2009, the overall electricity consumption of 

industry showed an upward trend. The data on urban residential electricity consumption shows a 

steady year-on-year increase. Overall, the electricity consumption of the main consumer sectors in 

Shanghai’s PI remained at a high level of demand during this period. 

61



Table 2: Electricity consumption by main consumer sectors in the power industry in Shanghai from 

2002 to 2011 

Years 

Electricity 

consumption 

(billion kilowatt 

hours) 

Agriculture 

(billion kilowatt 

hours) 

Industry (billion 

kilowatt hours) 

Urban residential 

electricity consumption 

(billion kilowatt hours) 

2002 645.71 6.46 447.46 61.85 

2003 745.97 6.75 507.00 82.87 

2004 821.44 6.48 555.08 90.64 

2005 921.97 5.76 617.59 109.20 

2006 990.15 5.34 656.10 122.37 

2007 1072.38 5.27 705.90 131.12 

2008 1138.22 5.08 727.13 146.55 

2009 1153.38 5.39 701.58 152.52 

2010 1295.87 6.07 786.61 168.95 

2011 1139.62 6.37 805.76 175.22 

Table 3: Carbon emission levels in Shanghai from 2002 to 2011 

Sequence Years Carbon emissions (10000 tons) 

1 2002 19616.43 

2 2003 21181.18 

3 2004 22897.37 

4 2005 24998.01 

5 2006 26640.29 

6 2007 28942.20 

7 2008 30094.62 

8 2009 30562.39 

9 2010 32418.94 

10 2011 33194.51 

It can be got from Table 3 that the carbon emissions level in Shanghai showed an increasing 

trend year by year from 2002 to 2011, with carbon emissions reaching 196.1643 million tons in 

2002 and increasing to 331.9451 million tons in 2011. 

3.2 Emission Accounting for Embodied Carbon 

Based on the electricity consumption data of the main consumer sectors in the PI in Shanghai 

from 2002 to 2011, initial energy input data, and carbon emissions levels in Shanghai from 2002 to 

2011, this article combines the input-output model to calculate the emissions of embodied carbon in 

the PI in Shanghai and its proportion in the total emissions of embodied carbon in the social 

industry. The results are shown in Figure 1. 

In Figure 1, the overall trend of emissions of embodied carbon in the PI in Shanghai from 2002 

to 2011 was not significant. Its emission value in 2002 was 31.2567 million tons, and its emission 

value in 2011 was 33.0215 million tons. Compared to 2002, its emission in 2011 only increased by 

1.7648 million tons. Over a longer time span, the increase in emissions was relatively small, but the 

emissions were at a relatively high level. From the proportion of embodied carbon emissions in the 

PI to the total embodied carbon emissions in the social industry, the highest proportion of embodied 

carbon emissions in the PI could reach 43.69%. 
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Figure 1: Accounting results of embodied carbon emissions 

To conduct an in-depth analysis of the changes in emissions of embodied carbon in Shanghai 

from 2002 to 2011, this article analyzed the sources of embodied carbon emissions in the PI in 

Shanghai based on the variables in Table 1. According to Equation (15), the contribution ratios of 

each influencing factor to the changes in embodied carbon emissions in 2002, 2007, and 2011 were 

calculated. Figure 2 presents the results: 

 

Figure 2: Calculation results of contribution ratio 

From the contribution ratio calculation results in Figure 2. In 2002, the factors that contributed 

the most to emissions were energy production structure, electricity consumption intensity, and 

population.  In 2007, the factors that contributed the most to emissions were energy production 

structure, industrial structure, and per capita GDP. In 2011, the factors that contributed the most to 

emissions were energy production structure, energy consumption rate, and electricity consumption 

intensity.  

3.3 Scenario Prediction 

According to the contribution ratio of embodied carbon emissions and influencing factors, this 

article selects representative energy production structure, electricity consumption intensity, 

population, industrial structure, per capita GDP, and energy consumption rate as key indicators. Due 

to the fact that population growth is a relatively slow and difficult to directly control factor in actual 

development and that industrial structure and per capita GDP represent the level and structural 

characteristics of economic development, this article takes these three types of factors as 

predetermined values in scenario assumptions and designs and analyzes scenarios based on changes 

in energy production structure, electricity consumption intensity, and energy consumption rate. The 
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three types of scenarios designed are shown in Table 4. 

Table 4: Scenario design 

Scenario sequence 
Energy production 

structure 

Electricity 

consumption 

intensity 

Energy 

consumption rate 

Scenario 1 
High-speed 

adjustment 

High-speed 

adjustment 

High-speed 

adjustment 

Scenario 2 
Medium-speed 

adjustment 

Medium-speed 

adjustment 

Medium-speed 

adjustment 

Scenario 3 
Low-speed 

adjustment 

Low-speed 

adjustment 

Low-speed 

adjustment 

Based on the scenario design in Table 4, scenario predictions are made for the emissions of 

embodied carbon in the PI in Shanghai from 2012 to 2021. The final results are shown in Figure 3. 

Embodied carbon emission scenario prediction
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Figure 3: Results of scenario prediction 

In Figure 3, it can be found that the predicted emissions of embodied carbon in Shanghai’s PI 

under Scenario 1 in 2012 were 33.2907 million tons; the emission prediction result under Scenario 

2 is 34.0276 million tons; the predicted emission under Scenario 3 is 35.1539 million tons. The 

predicted emissions of embodied carbon in Shanghai’s PI under Scenario 1 in 2021 were 36.7296 

million tons; the emission prediction result under Scenario 2 was 37.1445 million tons; the 

predicted emission under Scenario 3 was 42.8969 million tons. Given predetermined population, 

industrial structure, and per capita GDP, based on the embodied carbon emissions in Scenario 2, the 

changes in embodied carbon emissions under changes in energy production structure, electricity 

consumption intensity, and energy consumption rate are analyzed by comparing the predicted 

results of Scenario 1 and Scenario 3 with those of Scenario 2. It can be seen that compared to the 

low-speed adjustment in Scenario 3, the emissions of embodied carbon are lower under the 

high-speed adjustment of energy production structure, electricity consumption intensity, and energy 

consumption rate. 

4. Discussion  

To verify the effectiveness of the input-output model based study on the emissions of embodied 

carbon in the Shanghai’s PI, this article conducted experimental analysis from two aspects: 

accounting for embodied carbon emissions and scenario prediction. From the experimental analysis 

results of embodied carbon emissions, it can be obtained that the trend of changes in embodied 
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carbon emissions in Shanghai’s PI from 2002 to 2011 was not significant, but its overall emissions 

remained within a relatively high range. From the results of the contribution ratio of influencing 

factors, it can be seen that the emissions of embodied carbon are mainly affected by energy 

production structure, electricity consumption intensity, population, industrial structure, per capita 

GDP, and energy consumption rate. From the analysis of scenario prediction experiments, it can be 

seen that in scenario prediction analysis, when the energy production structure, electricity intensity, 

and energy consumption rate are rapidly adjusted, the results of embodied carbon emissions in the 

PI are more ideal. 

5. Conclusion  

As the demand for energy continues to rise, the embodied carbon emissions of the PI are 

becoming increasingly significant in terms of environmental protection and scientific development. 

Traditional models lack objectivity and accuracy in accounting work, making it difficult to provide 

reliable basis for the analysis of embodied carbon emissions. To promote the smooth progress of 

emission reduction work and the sustainable development of the PI, this article took Shanghai’s PI 

as the research object and uses input-output models to conduct in-depth research on its embodied 

carbon emissions from 2002 to 2011. Not only has it achieved objective accounting of embodied 

carbon emissions, but it has also analyzed the key influencing factors of embodied carbon emissions 

in the PI. Through scenario analysis, the emissions of embodied carbon in the Shanghai’s PI from 

2012 to 2021 under different scenarios were predicted. Based on this, effective suggestions have 

been provided for its future development in a targeted manner. This article is based on the 

input-output model to study the emissions of embodied carbon in the Shanghai’s PI. Although it can 

promote the realization of emission reduction targets to a certain extent, there are still some aspects 

that require improvement in the research process. In future research, in-depth analysis should be 

considered from the selection of sample data and regional differences to promote the healthy and 

sustainable development of the PI. 
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