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Abstract: Aiming at the problem of low probability of intercept (LPI) radar signal recognition 

accuracy under low signal-to-noise ratio (SNR), a method for LPI radar signal recognition 

based on convolutional neural network (CNN) and time-frequency denoising is proposed. 

Firstly, the Smoothed Pseudo Wigner-Ville Distribution (SPWVD), which performs well 

under low SNR, is applied for time-frequency analysis of radar signals. Then, a frequency 

domain filter is designed using the K-means clustering method to reduce noise in the signal. 

Finally, the basic structure of the CNN network is studied, and a CNN network structure is 

designed and developed for the proposed LPI radar signal recognition system. Suitable 

hyperparameters are determined for it through parameter tuning. Time-frequency images are 

input into the CNN network to extract and learn deep features for radar signal recognition. 

Experimental results show that when the SNR is -8 dB, the overall recognition accuracy of 

12 kinds of LPI radar signals reaches 91.67% using this method. 

1. Introduction 

The rapid and effective recognition of Low Probability of Intercept (LPI) radar signals is one of 

the core functionalities required in electronic warfare systems such as electronic support, electronic 

intelligence, electronic protection, and electronic attack. In practical applications, automatic radar 

signal recognition technology is a vital survival technique for threat identification by intercept 

receivers and radar emitter recognition[1]. Conversely, radar signals should be designed with LPI 

characteristics[2] to evade detection and recognition by intercept receivers. Therefore, intercept 

receivers must possess automatic LPI radar signal recognition capabilities, with highly reliable 

detection, classification, and identification abilities to preemptively recognize the presence of LPI 

radar signals. 

During the process of identifying radar signals, feature extraction is crucial, and researchers have 

proposed various methods for feature extraction when dealing with different signals. For example, 

references[3-4] extract features based on time-frequency analysis, while references[5-6] extract features 

based on autocorrelation functions. Since time-frequency analysis methods can effectively establish 

the time-frequency correspondence of non-stationary signals, this method has become an effective 

tool for studying non-stationary signals in non-ideal environments[7], such as Short-Time Fourier 

Transform (STFT)[8], wavelet transform, and Choi-Williams distribution (CWD)[9]. 
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In recent years, these time-frequency analysis methods have been combined with deep learning 

methods and applied to LPI radar signal recognition, achieving good recognition performance. 

Reference[10] designed an automatic classification recognition system combining Choi-Williams 

distribution and deep convolutional neural networks, with an overall recognition rate of 96.2% at a 

signal-to-noise ratio (SNR) of -2 dB. Reference[11] utilized the Fourier synchrosqueezing transform 

and convolutional neural networks to achieve good recognition of multi-phase radar signals under 

low SNR. Reference[12] combined ENN neural network classification recognition and proposed a 

radar signal feature extraction method based on CWD time-frequency transformation and image 

processing to achieve recognition of LPI radar signals under low SNR. Reference[13] introduced 

sample averaging techniques and convolutional neural networks (CNN) for radar signal recognition. 

With a SNR of -6 dB, the overall recognition rate of 12 radar signals including BPSK, LFM, Costas, 

Frank, P1-P4, T1-T4 reached 93.58%. Reference[14] used time-frequency images and CNN for radar 

signal recognition, analyzing the statistical characteristics of two-dimensional time-frequency images 

and proposing a simple dimensionality reduction and denoising method. Simulation results 

demonstrate that this method exhibits good recognition rates and strong generalization capabilities 

under low SNR conditions. 

This article implements a convolutional neural network recognition method based on time-

frequency features. To improve the recognition performance in noisy environments, a spectral 

calculation method based on SPWVD and K-means is proposed. In this method, the SPWVD 

spectrum of each LPI radar signal is first calculated. Then, the K-means clustering method is 

combined with SPWVD to design a frequency domain filter to reduce signal noise and calculate a 

new spectrum. Finally, the basic structure of CNN[15] is studied, and a suitable CNN structure is 

designed and developed for the proposed LPI radar signal recognition system. Suitable 

hyperparameters are determined through parameter tuning, proposing a CNN network suitable for the 

aforementioned denoising method. This CNN is used to achieve automatic recognition based on novel 

time-frequency images. 

In the experiments, 12 types of pulse compression signals defined in reference  are considered as 

LPI signals, including all 5 types of polyphase codes and 4 types of polytime codes. Furthermore, the 

performance of the LPI radar signal recognition system proposed in this article is compared with 

those in references, considering the signal parameters and simulation conditions used in those studies. 

Experimental results show that this method achieves high radar signal recognition accuracy at low 

SNR. This research is of significant importance for addressing the challenges and issues in radar 

signal recognition with low intercept probability, providing valuable references for related research 

and applications. 

2. System Model 

In this section, the system structure for the proposed LPI radar signal recognition and the definition 

of the 12 types of LPI radar signals considered in this paper are introduced. 

2.1. System Structure. 

As shown in Figure 1, the classification system mainly consists of three parts: signal preprocessing, 

feature extraction, and classifier. In the signal preprocessing stage, the received LPI radar signal is 

first processed through SPWVD to obtain its time-frequency image, which can reflect the signal's 

instantaneous frequency and has good noise resistance. For modulation recognition of radar signals, 

in order to reduce the impact of noise on feature extraction, K-means clustering is used to set less 

frequent frequency values in the signal's time-frequency image to zero to reduce noise interference. 

Subsequently, a CNN is designed for feature extraction. Finally, two fully connected layers with a 
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specific number of neurons are used as the classifier for signal recognition. 

SPWVD transform

K_means clustering

signal preprocessing

LPI radar signal

feature extraction

64×64×3

classifier

Signal type

 

Figure 1: LPI radar signal recognition system structure 

2.2. Signal Model 

If the received LPI radar signal is assumed to be a pulse wave with additive Gaussian white noise, 

the signal model can be represented as follows 

𝑦[𝑘] = 𝑥[𝑘] + 𝑤[𝑘] = 𝑎[𝑘]𝑒𝑗𝜃[𝑘] + 𝑤[𝑘]                                         (1) 

Where 𝑘 is the sample index increment at each 𝑇𝑠 under the sampling frequency 𝑓𝑠, 𝑎[𝑘] is the 

ideal sampled signal of the instantaneous envelope, 𝑇 is the pulse duration, 𝑇𝑠 is the sampling interval, 

𝑤[𝑘] is Gaussian white noise, and 𝜃[𝑘] is the instantaneous phase of the ideal sampled signal. The 

instantaneous phase 𝜃[𝑘] can be defined by the instantaneous frequency 𝑓[𝑘] and phase offset 𝜑[𝑘]: 

𝜃[𝑘] = 2𝜋𝑓[𝑘](𝑘𝑇𝑠) + 𝜑[𝑘]                                                   (2) 

The difference in 𝜃[𝑘] determines the modulation type of the radar signal. 

Table 1: 12 kinds of LPI radar signal pulse modulation functions 

Signal type 𝑓[𝑘][𝐻𝑧] 𝜑𝑖,𝑗[𝑘][𝑟𝑎𝑑] 

LFM 𝑓0 +
𝐵

𝜏𝑝𝑤
(𝑘𝑇𝑠) fixed constant 

Costas 𝑓𝑗 fixed constant 

BPSK fixed constant 0 or 𝜋 

Frank fixed constant 
2𝜋

𝑀
(𝑖 − 1)(𝑗 − 1) 

P1 fixed constant −
𝜋

𝑀
[(𝑀 − (2𝑗 − 1))][(𝑗 − 1)𝑀 + (𝑖 − 1)] 

P2 fixed constant −
𝜋

2𝑀
[2𝑖 − 1 − 𝑀][2𝑗 − 1 − 𝑀] 

P3 
fixed constant 𝜋

𝜌
(𝑖 − 1)2 

P4 
fixed constant 𝜋

𝜌
(𝑖 − 1)2 − 𝜋(𝑖 − 1) 

T1 
fixed constant 

𝑚𝑜𝑑 {
2𝜋

𝑁𝑝𝑠
⌊(𝑁𝑔(𝑘𝑇𝑠) − 𝑗𝜏𝑝𝑤)

𝑗𝑁𝑝𝑠

𝜏𝑝𝑤
⌋ , 2𝜋} 

T2 
fixed constant 

𝑚𝑜𝑑 {
2𝜋

𝑁𝑝𝑠
⌊(𝑁𝑔(𝑘𝑇𝑠) − 𝑗𝜏𝑝𝑤) (

2𝑗 − 𝑁𝑔 + 1

𝜏𝑝𝑤
)

𝑁𝑝𝑠

2
⌋ , 2𝜋} 

T3 
fixed constant 

𝑚𝑜𝑑 {
2𝜋

𝑁𝑝𝑠
⌊
𝑁𝑝𝑠𝐵(𝑘𝑇𝑠)2

2𝜏𝑝𝑤
⌋ , 2𝜋} 

T4 
fixed constant 

𝑚𝑜𝑑 {
2𝜋

𝑁𝑝𝑠
⌊
𝑁𝑝𝑠𝐵(𝑘𝑇𝑠)2

2𝜏𝑝𝑤
−

𝑁𝑝𝑠𝐵(𝑘𝑇𝑠)

2
⌋ , 2𝜋} 

𝑚𝑜𝑑:The remainder obtained by dividing a by b. 
⌊𝑎⌋:The largest integer that is less than or equal to a. 
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The 12 kinds of LPI radar signals considered in this paper are classified into frequency modulation 

and phase modulation. In frequency modulation, the instantaneous frequency 𝑓[𝑘] varies while the 

phase offset 𝜑[𝑘] remains constant. In phase modulation, 𝑓[𝑘] remains constant while 𝜑[𝑘] varies 

accordingly. The definitions are provided in Table 1, where "Subcode" indicates partial pulse intervals, 

and 𝜑[𝑘] is fixed as a constant within that interval. In this section, 12 types of LPI radar signals are 

defined as shown in Table 1, including Linear Frequency Modulation (LFM), Costas, Binary Phase 

Shift Keying (BPSK), 5 types of polyphase codes (such as Frank, P1, P2, P3, and P4 codes), and 4 

types of polytime codes (such as T1, T2, T3, and T4 codes). 

3. Signal Preprocessing 

Signal preprocessing is a crucial step in the field of signal processing, as it involves operations 

such as noise reduction, filtering, interference removal, etc., to enhance the quality and reliability of 

signals. Reference  proposes a spectrum calculation method for signal feature analysis using Short-

Time Fourier Transform (STFT) and K-means algorithm. In this paper, a signal preprocessing method 

based on Smoothed Pseudo Wigner-Ville Distribution (SPWVD) and K-means algorithm is designed 

specifically for LPI radar signals.  

Firstly, the SPWVD is utilized to perform time-frequency analysis on the signal, extracting the 

instantaneous frequency information of the signal and obtaining the time-frequency representation of 

the signal. The SPWVD transformation result for the signal 𝑦(𝑡) is as follows: 

𝑆(𝑡, 𝑣) = ∫ ℎ(𝜏)
+∞

−∞
∫ 𝑔(𝑠 − 𝑡)𝑦 (𝑠 +

𝜏

2
) 𝑦∗ (𝑠 −

𝜏

2
)

+∞

−∞
𝑑𝑠 𝑒−𝑗2𝜋𝑣𝜏 𝑑𝜏                   (3) 

Where ℎ(𝑡) is the window function, and 𝑔(𝑡) is the smoothing function. From the above, the 

SPWVD transformation of the discrete LPI radar signal 𝑦(𝑛) obtained by sampling is denoted as 

𝑆(𝑛, 𝑘), where 𝑆(𝑛, 𝑘) represents the frequency change of the signal 𝑦(𝑛) along the time n. The 

spectrogram of the SPWVD can be represented as... 

𝑆𝑎𝑏𝑠(𝑛, 𝑘) = |𝑆(𝑛, 𝑘)|                                                          (4) 

To remove noise from the signal, in Reference a frequency domain filter is designed to eliminate 

redundant frequency components and noise in the spectrogram. By summing 𝑆𝑎𝑏𝑠(𝑛, 𝑘) along the k-

axis, i.e., adding the components on the time axis n, the frequency distribution of y(n) can be obtained. 

This frequency classification is similar to the FT transformation of 𝑦(𝑛). 

𝐹(𝑘) = ∑ 𝑆𝑎𝑏𝑠(𝑛, 𝑘)𝑁−1
𝑛=0                                                           (5) 

 
(a) FT results                       (b) SPWVD results 

Figure 2: Spectrum image of Costas signal 
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Figure 2 shows the spectrogram of a Costas signal obtained through Fourier Transform and 

SPWVD, with Gaussian white noise at a SNR of -2dB. It can be observed from Figure 2 that the 

sensitivity of SPWVD to noise is lower than that of FFT. The frequency distribution curve in Figure 

2 (b) is smoother and exhibits better continuity. 

Using K-means clustering to classify the elements of sequence 𝐹(𝑘) in equation (5) into different 

clusters, then resetting the values in the cluster with the highest mean to the centroid value, and 

resetting the values in the cluster with the lowest mean (considered as noise points) to zero, as shown 

in Figure 3. 

Nosie points

K_means 
clustering

Nosie points
 removing

 

Figure 3: Noise data removal 

The accurate clustering of signal noise points during the computation of the frequency domain 

filter directly affects the effectiveness of noise removal. Therefore, the number of clusters in the K-

means algorithm becomes a key parameter. Figure 4 shows the results of processing the spectrum in 

Figure 2 (b) with different numbers of clusters. It can be observed from Figure 4 that the proposed 

method performs best when the number of clusters is 3. When the number of clusters exceeds 3, the 

smoothing performance decreases. Moreover, an increase in the number of clusters will increase the 

algorithm's complexity. Hence, the optimal number of clusters is 3, consistent with the research 

results in Reference. 

 
(a) 3 Cluster number          (b) 4 Cluster number 

 
(c) 5 Cluster number                 (d) 6 Cluster number 

Figure 4: Spectrum images after different clustering groups 
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Assuming 𝐹𝑎(𝑘) is the generated frequency domain filter, the denoised time-frequency image is 

obtained: 

𝑆𝑓(𝑛, 𝑘) = 𝑆𝑎𝑏𝑠(𝑛, 𝑘) ∗ 𝐹𝑎(𝑘)                                                   (6) 

Where 𝑆𝑓(𝑛, 𝑘) represents the result of signal preprocessing. 

Figure 5(a) shows the new time-frequency spectrum of the Coatas signal from Figure 2, while 

Figures 5(b)-(d) depict time-frequency images of other types. It can be observed from Figure 5 that 

this method can effectively eliminate noise under low SNR conditions. 

 
(a) proposed          (b) CWD                   (c) SPWVD                  (d) STFT 

Figure 5: -2dB SNR time-frequency image of Costas signal different simultaneous frequency 

analysis method 

4. Design of CNN 

Taking into account the number of classes to be classified and the subtle shapes of the image 

objects of the 12 LPI radar signals, it can be seen that the problem of handwritten recognition shares 

many similarities with the problem considered in this paper. Therefore, based on the study of CNN 

in Reference an appropriate CNN is developed for the proposed LPI radar signal recognition system. 

The basic structure of CNN can be described using a series of functions: Input - Conv - ReLU - 

Pooling - Conv - ReLU - Pooling - FC - Dropout - FC, where Conv stands for the convolutional layer, 

ReLU represents the non-linear activation function, Pooling denotes the pooling layer, FC indicates 

the fully connected layer, and Dropout is the stochastic dropout layer. Building upon this basic 

structure, hyperparameters are designed, such as input size, number of convolutional kernels, size of 

convolutional kernels, and number of neurons in the fully connected layer. 

By testing the recognition accuracy of 12 types of LPI radar signals at low SNR (-10dB to -6dB), 

adjustments are made to the input sizes of the CNN (such as 32×32, 64×64, and 128×128) and the 

number of convolutional kernels used in the first/second convolutional layers (such as 10/20, 20/40, 

30/60, and 40/80). The input size is related to the resolution of objects in the images, while the number 

of convolutional kernels aims to identify basic visual features. Subsequently, these visual features are 

combined by subsequent layers to detect higher-order features. 
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Figure 6: CNN network structure 
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Table 2 presents some simulation results to validate the proposed CNN design. As shown in the 

figure 6, an input size of 64×64 and 20 and 40 convolutional kernels for the first and second layers, 

respectively, yield the best performance. In the subsequent 10 rows of Table 2 (from the 13th row to 

the 22nd row), test results for various convolutional kernel sizes in the first and second layers are 

provided, assuming that the size of the first layer's kernels is greater than or equal to that of the second 

layer. The results indicate that, for these two layers, 7×7 kernels produce the best results. Regarding 

the stride size in the convolutional layers, a unit stride size is chosen as CNN needs to extract features 

from the subtle shapes of image objects. To determine hyperparameters in the pooling layer, max-

pooling with a filter size of 2×2 and a stride of 2, without zero-padding, is employed. In the non-

linear layers (omitted in Figure 6), ReLU is used as the activation function. From the last 7 rows of 

Table 2, it can be observed that the LPI radar signal recognition system performs best when there are 

100 neurons in FC-2. For simplicity, the Dropout layers between FC-1 and FC-2 are omitted in Figure 

6 to avoid potential overfitting issues. The final design details of the CNN are illustrated in Figure 6. 

Table 2: Determination of CNN network hyperparameters 

Input size 
Conv-1 

channel 
Conv-2 channel Conv-1 kernel_size Conv-2 kernel_size Number of neurons accuracy/% 

32×32 10 20 5×5 5×5 400 94.16 

32×32 20 40 5×5 5×5 400 94.9 

32×32 30 60 5×5 5×5 400 95.19 

32×32 40 80 5×5 5×5 400 95.12 

64×64 10 20 5×5 5×5 400 95.38 

64×64 20 40 5×5 5×5 400 95.58 

64×64 30 60 5×5 5×5 400 95.27 

64×64 40 80 5×5 5×5 400 94.36 

128×128 10 20 5×5 5×5 400 94.89 

128×128 20 40 5×5 5×5 400 93.52 

128×128 30 60 5×5 5×5 400 94.21 

128×128 40 80 5×5 5×5 400 94.26 

64×64 20 40 

3×3 3×3 400 94.69 

5×5 3×3 400 94.76 

5×5 5×5 400 95.58 

7×7 3×3 400 95.08 

7×7 5×5 400 95.13 

7×7 7×7 400 96 

9×9 3×3 400 95.19 

9×9 5×5 400 95.9 

9×9 7×7 400 95.71 

9×9 9×9 400 95.12 

64×64 20 40 7×7 7×7 

50 95.78 

100 96.12 

200 95.34 

300 95.16 

400 96 

500 95.69 

600 95.07 

During the process of determining the hyperparameters of the network model described above, a 

simulated LPI radar signal time-frequency image is used as the dataset, which is divided into training, 

validation, and test sets. The Cross Entropy Loss function is chosen as the loss function, which is 

suitable for multi-classification problems and effectively measures the gap between the model's 

predicted results and the actual results. The optimizer selected is Adam, which combines the 
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advantages of Adagrad and RMSprop, allowing for adaptive adjustment of the learning rate and 

accelerating the convergence speed of the model. The learning rate, batch size, and epochs are set to 

0.001, 64, and 35, respectively. The learning rate is reduced by half every ten epochs. 

5. Simulation Experiment 

This section verifies the performance of the proposed recognition system and the feasibility of the 

signal denoising method through simulation experiments. The section consists of three parts. The first 

part provides the simulation parameters for the low probability of intercept radar signals. The second 

part validates the effectiveness and recognition accuracy of the proposed recognition system. The 

third part compares the recognition accuracy of the recognition system with other systems reported 

in the literature. 

5.1. Radar signal data generation 

In the experiment, 12 simulated LPI radar signals were generated for training, validation, and 

testing purposes. To make the simulated signals similar to real signals, the parameter values of the 

signals were randomly set within specified ranges, and Gaussian white noise with different SNR was 

added to the signals. The parameters of each signal are shown in Table 3. The signal sampling rate is 

𝑓𝑠 = 50𝑀𝐻𝑧. Each signal generates 600 data points, and the SNR varies from -10 dB to 6 dB in 2 dB 

increments. After generating these signals, the proposed SPWVD-K_means method is used to 

transform the signals into time-frequency images. The dataset is divided into three parts, with a data 

ratio of 4:1:1 for the test set, validation set, and training set, respectively. 

Table 3: Setting of 12 LPI radar signal parameters 

signal simulation parameter parameter scale 

LFM 
carrier frequency 𝑓0 

bandwidth 𝐵 
[𝑓𝑠/8, 𝑓𝑠/4] 

[𝑓𝑠/12, 𝑓𝑠/8] 

Costas 
fundamental frequency 𝑓𝑚𝑖𝑛 

Frequency hop ℎ 
[𝑓𝑠/50, 𝑓𝑠/40] 

[6,10] 

BPSK 

carrier frequency 𝑓0 

Barker code length 𝐿𝑐 

Phase code period 𝐶𝑝𝑝 

[𝑓𝑠/8, 𝑓𝑠/4] 
{7,11,13} 

[6,10] 

Frank, P1, P2 

carrier frequency 𝑓0 

Frequency step 𝑀 

Phase code period 𝐶𝑝𝑝 

[𝑓𝑠/8, 𝑓𝑠/4] 
[6,10] 
[2,5] 

P3, P4 

carrier frequency 𝑓0 

Subcode number 𝑁𝑐 

Phase code period 𝐶𝑝𝑝 

[𝑓𝑠/8, 𝑓𝑠/4] 
{36,49,64,81,100} 

[2,5] 

T1, T2 
carrier frequency 𝑓0 

number of segments 𝑚 
[𝑓𝑠/8, 𝑓𝑠/4] 

[4,6] 

T3, T4 
carrier frequency 𝑓0 

bandwidth 𝐵 
[𝑓𝑠/8, 𝑓𝑠/4] 

[𝑓𝑠/12, 𝑓𝑠/8] 

5.2. Verify the effectiveness of the proposed system 

To demonstrate the effectiveness of the proposed recognition system model in extracting time-

frequency image features, 100 time-frequency images were selected as the test set for each signal at 
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each SNR. The confusion matrix for correctly identifying the 12 types of signals is shown in Figure 

7. From the figure, it can be observed that except for signals P1 and P4, the recognition accuracy for 

other radar signals exceeds 94%. 

Figure 8 presents the confusion matrix for the 12 types of signals at a SNR of -8 dB. Signal P1 

was misidentified as P4 26% of the time, while signal P4 was misidentified as P1 24% of the time. 

This is mainly due to the high similarity in the time-frequency images of P1 and P4, making these 

two signals easily confused. Additionally, at low SNR, the presence of significant noise results in the 

temporal and frequency information being submerged, posing challenges to the recognition process 

and reducing the recognition accuracy. 

From the above analysis, it is evident that each signal achieves a high recognition rate at low SNR, 

which effectively demonstrates the validity of feature extraction in the proposed SPWVD-K_means-

CNN recognition system. 

 

Figure 7: Identification confusion matrix of total signal 

 

Figure 8: -8dB identification confusion matrix of 12 LPI radar signals 
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5.3. Performance comparison 

To validate the feasibility of the proposed denoising method, experimental evaluations were 

conducted. The previously generated dataset and the proposed neural network were utilized to 

experiment with the SPWVD+K_means denoising method. In the experiment, STFT+K_means was 

used as a comparison experiment with SPWVD to better evaluate the effectiveness of the proposed 

denoising method. For the comparative experiment, the same data was processed to obtain the 

corresponding dataset. To assess the recognition performance of this method, it was compared with 

CWD-ResNet-SVM, FSST-CNN, and CWD-CNN. 

Figure 9 presents the overall recognition results of the six methods at different SNR. As shown in 

Figure 9, when the SNR is greater than -4 dB, all methods except for CWD-ResNet-SVM exhibit 

high recognition accuracy, achieving over 95% recognition accuracy. As the SNR decreases, the 

recognition curve significantly declines. The proposed method demonstrates good recognition 

performance at low SNR. At a SNR of -8 dB, the recognition accuracy of this method is 91.67%, 

which is 4.42% higher than the best result of the other five methods. Even at a SNR of -10 dB, this 

method can still achieve a recognition accuracy of 78.33%, which is 3.23% higher than FSST-CNN. 

These results indicate that the method exhibits high recognition accuracy and strong noise resistance. 

Furthermore, the proposed denoising method shows better denoising effects compared to signal 

processing methods using STFT+K_means or SPWVD. Specifically, data processed with the 

proposed denoising method shows a significant improvement in SNR. This suggests that the proposed 

denoising method is highly feasible and practical, with the potential for wide application in real-world 

scenarios. 

 

Figure 9: Performance comparison of the six methods under different SNR 

6. Conclusions 

This paper proposes a convolutional neural network-based method for the recognition of LPI radar 

signals. Firstly, a frequency domain filter is designed based on SPWVD time-frequency analysis and 

K_means clustering to denoise the LPI radar signals, obtaining denoised time-frequency images. 

Subsequently, the basic structure of CNN is studied, and a suitable CNN network structure is designed 

and developed for the proposed LPI radar signal recognition system, with appropriate 

hyperparameters determined through parameter optimization. The obtained time-frequency images 

are input into the CNN network to extract and learn deep features for radar signal recognition. 
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Experimental results demonstrate that, at a SNR of -8 dB, the overall recognition accuracy of this 

method for 12 types of LPI radar signals reaches 91.67%. This effectively addresses the challenges 

and issues in automatic identification of low probability of intercept radar signals. Compared with 

other methods, the proposed method exhibits higher radar signal recognition accuracy in low SNR 

environments and can be widely applied in fields such as electronic surveillance for the identification 

of real-world radar signals. 
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