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Abstract: This paper reviews the development of text classification algorithms, from rule-

based and traditional machine learning methods to the evolution of deep learning and pre-

trained models. As a crucial aspect of natural language processing, text classification is 

essential for various applications, such as information retrieval and sentiment analysis. The 

application of deep learning models like CNNs, RNNs, and pre-trained models such as BERT 

in text classification is highlighted, showcasing their advantages in processing large corpora. 

The challenges and future research directions in text classification are also discussed, offering 

guidance to researchers and practitioners in the field. 

1. Introduction 

Text classification[1], a fundamental task in natural language processing, categorizes texts into 

predefined categories. Initially dependent on manually crafted rules like keyword matching, the field 

has advanced with statistical learning methods such as Naive Bayes[2] and SVMs[3], enhancing 

automation and performance. The 21st century saw deep learning technologies like CNNs and RNNs 

capture deeper textual features. Recently, Transformer-based pre-trained models like BERT and GPT 

have emerged, setting new benchmarks by learning rich language representations. Despite significant 

progress, challenges remain, including low-resource language processing, enhancing model 

generalization, and reducing resource consumption.  

2. Fundamental Knowledge 

2.1. Text Classification Paradigms 

Text classification has evolved from rule-based, machine learning, to deep learning approaches. 

Initially, rule-based methods classified text by defined rules, precise but costly and less adaptable. 

Machine learning methods, such as supervised learning algorithms like Naive Bayes, SVMs, and 

decision trees, as well as unsupervised learning techniques like cluster analysis and automated 

learning and adaptation, require extensive training data. Deep learning methods, especially CNNs, 

RNNs, and Transformer models, have excelled by learning complex features and capturing deep 

semantics, notably improving text classification performance in the pre-training and fine-tuning 

framework. 
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2.2. Fundamentals of Text Classification 

Key to text classification is converting raw text into a model-processable format, including text 

cleaning, tokenization, stop word removal, and stemming. Feature extraction transforms preprocessed 

text into feature vectors, using models like Bag of Words (BoW), TF-IDF, and embeddings like 

Word2Vec. Model training and evaluation use labeled datasets, assessing performance through 

accuracy, recall, and F1 scores, further optimized by parameter tuning and cross-validation. 

3. Text Classification Models 

This section delves into key machine learning models, including Naive Bayes, SVMs, CNNs, 

RNNs, and Transformer models. Each model's development background, theoretical principles, main 

applications, and achievements are explored, demonstrating their effectiveness in solving text 

classification challenges. 

3.1. Naive Bayes Classifier 

In the field of natural language processing, especially in the task of text classification, the Naive 

Bayes classifier holds an indispensable position. This simple probabilistic classifier, based on Bayes' 

theorem, has become a powerful tool for addressing issues such as spam email detection and 

document categorization due to its straightforward mathematical principle and efficient 

implementation. Despite the foundational assumption of the Naive Bayes classifier — the 

independence between features — which often does not hold true in real applications, this model still 

demonstrates outstanding classification performance across various datasets. 

The working principle of the Naive Bayes classifier is based on Bayes' theorem, a simple yet 

influential formula in probability theory. It is used to calculate the probability of a hypothesis given 

some evidence, as shown in the following equation: 

𝑃(𝐶𝑘 ∣ 𝑥) =
𝑃(𝑥∣𝐶𝑘)𝑃(𝐶𝑘)

𝑃(𝑥)
                            (1) 

In this formula, P(Ck∣x) represents the posterior probability that the given text x belongs to 

category Ck. P(x∣Ck) indicates the likelihood of text x appearing, given that it belongs to category 

Ck.P(Ck) is the prior probability of category Ck, that is, the probability of category Ck occurring before 

any text information is provided. Finally, P(x) is the probability of the occurrence of text x. By 

calculating these probabilities, the Naive Bayes classifier can determine the most likely category to 

which the given text belongs. 

3.2. Classification Method Based on Support Vector Machine Model 

The Support Vector Machine (SVM), proposed by Cortes and others, is a powerful machine 

learning model widely used in text classification tasks. Its fundamental principle is to find the optimal 

decision boundary, namely the maximum-margin hyperplane, to distinguish between different 

categories of data points. Due to its excellent generalization ability, SVM performs outstandingly in 

many high-dimensional data classification tasks, including text classification. 

When applied to text classification tasks, the core concept of SVM is to transform each text in the 

dataset into a feature vector, and then to construct a separating hyperplane to maximize the distance 

between support vectors, thereby achieving the purpose of classifying text data. Given a set of text 

data, each text is transformed into a high-dimensional feature vector xi∈Rp, where each dimension 

represents a feature (such as the importance of a word or its frequency), and yi∈{−1,1} represents 

35



the category label for each text. SVM seeks to find a hyperplane in this high-dimensional space: 

𝑤 ⋅ 𝑥 + 𝑏 = 0                                  (2) 

where w is the normal vector to the hyperplane, and b is the bias term. The choice of the hyperplane 

follows the principle of maximizing the margin, that is, minimizing ∥w∥2 while ensuring that all 

data points satisfy: 

𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏𝑖) ≥ 1, 𝑖 = 1,…… 𝑙                         (3) 

Solving this minimization problem ensures that the distance from the hyperplane to the nearest 

data points (i.e., the support vectors) is maximized, thus enhancing the model's generalization ability. 

However, in actual text classification tasks, it is often difficult to find a perfect classification 

hyperplane that completely separates all samples. This challenge can be addressed by introducing 

slack variables ξi≥0 to meet the following conditions: 

𝑦𝑖((𝑤 ∙ 𝑥𝑖) + 𝑏) ≥ 1 − ξ𝑖 , 𝑖 = 1, …… 𝑙                       (4) 

After introducing slack variables, the optimization goal of SVM simultaneously considers 

maximizing the margin and minimizing classification errors, thereby adapting to complex and noisy 

real text data while maintaining model generalization ability. This method provides a robust model 

framework for text classification, especially suitable for dealing with high-dimensional, sparse text 

datasets, making it an effective tool for solving text classification problems. 

3.3. Classification Method Based on Decision Tree Model 

The application of decision tree models in text classification aims to predict the category of texts 

by learning decision rules from text features. Initially, it is necessary to extract features from the text 

data, such as word frequency and key terms within documents. Subsequently, these features are used 

to construct a decision tree. The decision tree model employs a supervised learning approach, building 

a tree structure from the top down through recursive partitioning. Its core objective is to analyze the 

training dataset to learn a series of decision rules, thereby constructing a model capable of predicting 

the category of target variables. After the complete construction of the decision tree, pruning is often 

applied to the model to reduce the negative impacts of noise and overfitting phenomena on 

classification performance. 

The decision tree model is a method that recursively builds a tree structure from the data in a 

supervised learning manner, aiming to predict the category of target variables by learning decision 

rules from the training data. This model is constructed in a top-down approach. Once the decision 

tree is fully built, pruning techniques can be utilized to reduce noise and overfitting, thereby 

enhancing the model's accuracy in classifying new data. 

4. Deep Learning Models in Text Classification 

Deep learning has revolutionized fields like image recognition and machine translation by learning 

complex feature relationships. This section discusses foundational network models like FNNs, RNNs, 

and CNNs in text classification, their unique advantages, and the further enhancement of model 

performance through text embedding techniques. 

4.1. Text Classification Method Based on Basic Network Models 

Deep learning technologies, by automatically discovering hidden feature patterns, have reduced 

the need for feature engineering, showcasing unique advantages and significant achievements in text 
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classification through feedforward neural networks, recurrent neural networks, and convolutional 

neural networks. 

Feedforward Neural Networks (FNN)[4] serve as the basic framework for deep learning in text 

classification, consisting of input layers, embedding layers, multiple stacked neural network 

processing layers, and output layers. The FastText[5] model builds on this by incorporating character-

level n-grams as features, enhancing the understanding and generalization of infrequent words, 

though it has limitations in handling long-distance sequence dependencies and complex semantics. 

To delve deeper into the rich semantic information contained in texts and effectively address the 

context dependency issues in longer texts, researchers have turned to Recurrent Neural Networks 

(RNN)[6] to model the sequential nature of text. Text is understood as a series of words arranged in 

temporal order, such as text S = {w1, w2, ..., wn}, where each word wi represents its state at a specific 

time ti. RNNs are widely regarded as effective tools for handling such sequential data. However, 

standard RNNs often encounter vanishing gradient problems when processing long sequences, 

making it difficult for the model to retain information about long-distance dependencies. To address 

this challenge, variants of RNNs, such as Gated Recurrent Neural Networks and Long Short-Term 

Memory networks (LSTM)[7], are commonly used in text classification research. LSTMs manage the 

flow of information effectively through memory cells and three special gates (input gate, forget gate, 

output gate), thereby preserving long-term dependency information. 

Recurrent Neural Networks (RNN) excel in processing the temporal characteristics of text, while 

Convolutional Neural Networks (CNN) demonstrate advantages in phrase or keyword identification 

through the TextCNN model, using multi-size filters to capture local features of text. TextCNN 

integrates key information through max pooling to form advanced representations, effectively 

revealing local semantics but is limited in handling long-distance dependencies. 

Furthermore, the development of text embedding technologies has further enhanced model 

performance, including character-level, word-level, and sentence-level embeddings, each addressing 

the issues of out-of-vocabulary words, learning grammatical and semantic information, and capturing 

the potential connections between sentences. 

Overall, compared to traditional machine learning methods, deep learning's basic network models 

show significant advantages in processing word order information and deep semantic analysis. 

However, these foundational models also have their own limitations, such as the simplicity of the 

model structure and the capacity to model specific types of information. 

4.2. Classification Method Based on Graph Neural Network Models 

Graph Neural Networks (GNNs)[8] enhance the performance of classification tasks by mining the 

internal graph structure information of texts, such as syntactic and semantic dependency trees. GNNs 

utilize an information propagation mechanism, iteratively improving node representation by 

aggregating information from neighboring nodes and combining it with the node's own representation. 

Various aggregation and combination functions have led to a diversity of GNN architectures, 

adaptable to different application scenarios. 

GNNs demonstrate flexibility and effectiveness in text classification tasks across different scales, 

from words to documents. TextRank, a pioneer in applying graph structures to text classification, 

constructs graph models with nodes and edges representing text units and their relationships, catering 

to a wide range of text processing needs from sentiment analysis to topic classification. 

On a more macroscopic, document-level, Peng and others introduced a graph-based CNN model 

in 2018. This model represents texts as word graphs and uses graph convolutions to feature these 

word graphs for document classification. This method effectively captures discontinuous and long-

distance dependencies within texts, leveraging the powerful semantic learning capabilities of CNNs. 
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In 2019, Yao and his team adopted another approach by constructing a heterogeneous graph 

containing both word and document nodes to classify text data, a novel innovation at the document 

granularity. In this graph, the connections between words and documents are determined by word 

frequency, while connections among words are based on their semantic associations. Using Graph 

Convolutional Networks (GCNs) to process this structure and facilitating information transfer 

between documents to learn embeddings for unlabeled words and documents, this strategy improved 

performance by an average of 1.2% across multiple standard datasets, achieving an average accuracy 

of 84.5%. 

In sentence-level classification tasks, in 2019, Zhang and his team used the Dependency Tree (DT) 

structure within sentences to construct text graphs, subsequently applying GNNs for sentence 

classification. This method significantly enhanced the accuracy of the classification model by 

effectively utilizing long-distance dependencies between words. Continuing in this research direction, 

in 2020, Zhang and others constructed independent graph representations for each document and used 

GNNs to learn representations of words within documents. This approach, emphasizing the capability 

to generate embeddings for unknown words in documents, exhibited exceptional performance across 

multiple standard datasets. 

4.3. Classification Method Based on Transfer Learning Models 

Transfer learning technology[9], by leveraging relevant knowledge, enhances the model's 

performance on new tasks and reduces the dependency on labeled data. Especially in cross-domain 

or multi-level text classification tasks, such as fake news detection and topic identification, transfer 

learning has shown significant advantages, overcoming the limitations of traditional deep learning 

models and has proven effective in various fields like sentiment analysis and computer vision. 

In 2018, Howard and others proposed ULMFiT[10], an innovative fine-tuning method for universal 

language models, which implemented transfer learning in natural language processing (NLP) tasks. 

It is applicable to a variety of text classification tasks without the need for additional data support and 

significantly reduced error rates in small sample data environments. In 2019, Banerjee and his team 

introduced HTrans, a hierarchical transfer learning strategy for multi-label text classification 

problems. By fine-tuning classifiers from top to bottom within a hierarchical structure, they 

significantly improved classification performance. In the same year, Houlsby and others addressed 

the issue of parameter efficiency when fine-tuning pre-trained models, introducing an efficient 

adapter module strategy that requires tuning only a small number of parameters to achieve good 

performance. In 2020, Raffel and others proposed a framework that unifies all text-based tasks into a 

text-to-text format, further expanding the application of NLP transfer learning. In 2021, Cao and 

others proposed a new fine-grained cross-domain sentiment classification deep transfer learning 

mechanism to better utilize unlabeled data in the target domain. This approach uses a domain 

adaptation model to minimize the feature distribution differences between the source and target 

domains. 

Transfer learning reduces the reliance on data and annotations in text classification, facing 

challenges such as the complexity of cross-domain knowledge transfer, the assessment of cross-

domain transfer potential, and handling content privacy. Specifically, the context dependency of word 

meanings may lead to negative transfer from a weakly related source domain to the target domain, 

necessitating the development of new strategies to avoid such impacts. 

4.4. Classification Method Based on Pre-trained Models 

Pre-trained models[11], by learning general data characteristics on large datasets, provide a strong 

starting point for specific natural language processing tasks. This approach allows downstream tasks 
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to fine-tune based on foundational knowledge, achieving high performance and reducing the need for 

training data. The effectiveness of pre-trained models stems from their rich inherent general 

information, leading to rapid convergence, low data dependency, outstanding performance, and 

reduced risk of overfitting. 

Pre-trained models learn general characteristics on large datasets, offering an optimized starting 

point for specific tasks such as text classification. This strategy reduces the need for training data, 

speeds up model convergence, improves performance, and lowers the risk of overfitting due to the 

extensive information contained within. 

Unsupervised learning techniques are widely applied in pre-trained models because they can be 

trained on a large amount of unlabeled data. Self-supervised learning, a combination of unsupervised 

and supervised methods, generates training signals from unlabeled data to facilitate learning. This 

enables models to learn feature extraction without manual annotation, significantly reducing data 

preparation costs. Self-supervised learning has proven effective in large-scale language models like 

BERT[12] and GPT, advancing natural language processing technology. 

Word2Vec[13], an early pre-trained language model, trained through unsupervised skip-gram and 

continuous bag-of-words strategies, provides features for text classification. However, it produces 

fixed word vectors, ignoring the polysemy of words, such as different meanings of "apple" in various 

contexts, which may limit model performance. Therefore, Word2Vec generates a static word 

embedding for "apple," which might restrict the model's capability in tasks like text classification. 

To address the issue of capturing polysemy in models like Word2Vec, researchers introduced the 

Masked Language Model (MLM), as used in BERT. MLM randomly masks words in the input, 

training the model to predict these words based on context, allowing the model to learn context-

related word embeddings without manual annotation. This requires the model to utilize bidirectional 

context, enhancing sensitivity to semantic changes and generalization capability. 

When using BERT for text classification tasks, a special token [CLS] is added at the front of the 

input sequence. This token has a specific meaning within BERT's architecture, used to generate an 

embedding vector representing the entire input sequence for classification tasks. In the process of text 

classification, analyzing the final embedding vector corresponding to the [CLS] token, and passing it 

to a simple classifier (such as a softmax function), allows for the prediction of the entire text 

sequence's category label. 

𝑝(𝑦𝑖|ℎ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ[𝐶𝐿𝑆])                        (5) 

The MLM (Masked Language Model) training strategy has endowed BERT with powerful 

language understanding capabilities. After completing pre-training, BERT can be fine-tuned to adapt 

to a wide range of NLP tasks, including text classification, named entity recognition, and question-

answering systems. In these tasks, BERT's bidirectional context comprehension significantly 

enhances model performance. 

For instance, in sentiment analysis tasks, the rich contextual information learned through MLM 

allows BERT to understand the sentiment in texts more accurately. In question-answering systems, 

BERT's ability to understand bidirectional context enables it to more precisely locate the position of 

answers. 

The introduction of the MLM training method for the BERT model has not only opened a new 

direction for the development of pre-trained language models but has also greatly advanced the field 

of NLP. Its ability to capture complex bidirectional contextual information is key to its outstanding 

performance across many tasks. However, the BERT model also faces some challenges, including the 

significant demand for computational resources and limitations in processing long texts. Despite these 

challenges, the successful application of BERT and its variants in the NLP field undoubtedly 

demonstrates the immense potential and value of deep learning-based pre-trained models. 
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5. Comparison and Experimental Analysis of Text Classification Algorithms 

5.1. Evaluation Methods 

Evaluating the strengths and weaknesses of classification algorithms often involves multiple 

aspects, including accuracy, generalization ability, computational efficiency, and model 

interpretability. To comprehensively assess classification algorithms, researchers use various 

evaluation metrics and methods. Here are some of the most commonly used evaluation methods: 

Accuracy is one of the most intuitive evaluation metrics, defined as the proportion of correctly 

classified samples to the total number of samples. For binary classification problems, accuracy can 

be represented as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                          (6) 

where TP (True Positives) and TN (True Negatives) represent the number of correctly classified 

positive and negative classes, respectively, while FP (False Positives) and FN (False Negatives) 

represent the number of samples incorrectly classified as positive and negative classes, respectively. 

Precision focuses on the proportion of samples predicted as positive by the model that are actually 

positive; recall, on the other hand, focuses on the proportion of all actual positive samples that are 

correctly predicted as positive by the model. These two metrics are particularly useful in cases of data 

imbalance, with formulas as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                             (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                               (8) 

The F1 score is the harmonic mean of precision and recall, attempting to strike a balance between 

these two metrics. The formula for the F1 score is:  

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                          (9) 

The F1 score is particularly applicable in scenarios where precision and recall are equally 

important. 

5.2. Performance Comparison 

Across several commonly used datasets: 

IMDb Movie Review Dataset: Used for sentiment analysis, it contains a large number of movie 

reviews with their sentiment labels (positive or negative). 

20 Newsgroups: A news group message dataset containing documents from 20 different topics, 

suitable for topic classification tasks. 

Reuters-21578: A news wire dataset frequently used for news article topic classification. 

AG's News Corpus: A news article dataset for news classification, containing multiple categories. 

Different text classification models have shown their respective strengths and limitations: 

FNN: While performing well on some simple text classification tasks, FNNs often fail to capture 

long-distance dependencies in text, limiting their application in complex tasks. 

LSTM and RNN: Due to their recurrent structure, these two models can handle sequential data 

well, especially in capturing long-term dependencies, superior to FNN. However, LSTMs and RNNs 

may encounter gradient vanishing or exploding problems when processing very long sequences. 

CNN: By leveraging local relevance, CNNs excel at extracting key local features in text, 

particularly suitable for tasks like sentiment analysis that require capturing local text patterns. 
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word2vec: As a pre-trained word embedding method, word2vec can effectively capture semantic 

relationships between words, but its performance largely depends on the capability of the downstream 

model. 

BERT: As a Transformer-based pre-trained model, BERT captures rich linguistic features through 

pre-training and achieves state-of-the-art (SOTA) performance in multiple text classification tasks by 

fine-tuning. Its success is largely due to its deep bidirectional structure, enabling a comprehensive 

understanding of language context. 

Experimental results show that models based on deep learning (such as CNN, LSTM, BERT) 

typically outperform traditional machine learning models (such as FNN based on word2vec) in text 

classification tasks. Among them, BERT, due to its powerful language understanding ability, performs 

exceptionally well on datasets with complex semantic relationships. However, the performance of 

deep learning models often relies on a significant amount of training data and computational resources. 

The performance differences between algorithms are primarily determined by their architectural 

features: for example, CNNs excel at capturing local features, LSTMs and RNNs are better at 

capturing long-term dependencies, and BERT's bidirectional Transformer structure enables it to 

thoroughly understand text context. Choosing which classification model to use depends on the 

specific circumstances and needs. 

Overall, the main advancements in the text classification field currently focus on the integrated 

use of deep learning technology and pre-trained language models. By fine-tuning pre-trained models 

or designing optimized input prompts for specific tasks, researchers can significantly improve model 

performance across various application scenarios. With the continued progress of these technologies, 

the text classification field is expected to experience rapid development. This article provides 

valuable insights and guidance for the research community and practitioners by analyzing the 

performance of various text classification models on different datasets. These research findings have 

practical value in selecting, designing, and optimizing text classification models, contributing to the 

further development and innovation of text classification technology. 

6. Future Directions and Challenges 

The text classification field faces challenges with technological advancements and data growth, 

such as the complexity of processing unstructured text, understanding the implied meanings and 

semantics, and long-distance dependencies. Future directions include multimodal classification 

integrating information beyond text, cross-lingual classification breaking language barriers, and 

enhancing performance with deep learning technologies like pre-trained models BERT and GPT. 

Challenges involve processing unstructured text, understanding the complexity of natural language, 

adapting models to new vocabulary, and dealing with multimodal and cross-lingual text processing. 

Deep learning offers new avenues for complex text classification, indicating that through 

technological innovation and optimization strategies, text classification will achieve more precise and 

efficient processing capabilities. 

7. Conclusion  

This article reviews the evolution of text classification algorithms, from rule-based and statistical 

methods to deep learning models such as CNN, RNN, LSTM, BERT, and GPT, highlighting their 

contributions to improving classification accuracy and efficiency. Text classification technology has 

played a key role in various domains, including sentiment analysis and spam detection, aiding 

businesses in extracting valuable information. Despite facing challenges such as processing 

unstructured text and understanding complex semantics, future research will focus on innovations in 

model architecture, interpretability, cross-lingual capabilities, and multimodal classification methods. 
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The aim is to achieve more accurate, transparent, and widely applicable text classification solutions, 

continuing to advance the field of natural language processing. 
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