
A GNN Approach for Turn-Level Traffic Prediction:

Dynamic Relation Awareness and Hypergraph Modeling

Haoyang Duan1,a,*, Feihu Jiang1,b

1School of Computer Science and Technology, USTC, Hefei, China
aduanhaoyang@mail.ustc.edu.cn, bjiangfeihu@mail.ustc.edu.cn

*Corresponding author

Keywords: Turn-level Traffic Flow Prediction, Relation-aware Diffusion Convolution,

Hypergraph Learning

Abstract: It cannot be emphasized too much to predict traffic flow accurately in modern

intelligent transportation systems. Though big progress has been made, few works focus on

the turn-level traffic flow prediction, which is important to inspect fine-grained urban

traffic dynamics closely. In this work, we develop a GNN (Graph Neural Network)

approach built upon Dynamic Relation Awareness and Hypergraph modeling toward turn-

level traffic flow prediction, namely DrahGNN. First, we construct a dynamic graph

sequence where each snapshot denotes a turn-level traffic flow picture on top of a real-

world road network. Second, we innovate a relation-aware spatiotemporal diffusion

convolution network to capture road segments’ differences and relatedness explicitly. Third,

we construct a hypergraph in each time frame to capture high-order and manifold

correlations between road segments and design an attentive two-stage message-passing

mechanism for aggregating infor- mation from non-directly connected nodes. We conduct

empirical studies on real-world data which demonstrate the effectiveness of our proposed

framework.

1. Introduction

Traffic prediction, which encompasses the estimation of traffic flow volume and density, is

pivotal in shaping intelligent urban environments. Within this realm, turn-level traffic prediction,

which aims to forecast fine-grained traffic flow at distinct turn directions within the road network as

shown in Figure 1(a), emerges as a critical endeavor and has been rarely studied. By providing

valuable insights, it significantly contributes to the optimization of traffic signal control and the

configuration of transportation networks, thereby facilitating the realization of intelligent cities [1,

2].

Recent advancements in graph neural networks (GNN) have demonstrated their superiority on

the traffic flow prediction problem over traditional time series methods [3, 4], as well as other deep

learning techniques such as CNN and RNN [5, 6, 7, 8, 9]. Though there are extensive studies

ontraffic flow prediction, few focus on turn-level, which is more fine-grained and practical in real-

world scenarios, like smart traffic signal control. Due to the dynamic complex spatiotemporal

correlations between roads and the inherent difficulty of turn-level traffic prediction, existing

Journal of Electronics and Information Science (2024)
Clausius Scientific Press, Canada

DOI: 10.23977/jeis.2024.090208
ISSN 2371-9524 Vol. 9 Num. 2

68

methods still have some limitations.

(a) An illustrative example of the road network where the turn-level traffic is examined. (b) Traffic

flow of different turn directions on a road segment during a day.

Figure 1: The diversity in turn-level traffic flow.

First, the correlations between roads change dynamically over time, but most existing GNN-

based works [10, 11, 12] employ a static adjacent matrix to represent spatial dependencies between

roads, which cannot reflect this dynamicity. Though some works attempt to construct a new graph

structure that contains both spatial and temporal information [13, 14, 15], these manually predefined

adjacency matrices may introduce bias, further reducing the generalizability of the model. Second,

as shown in Figure 1(b), traffic flow distribution between different road segment pairs can have

significant discrepancies in different turn directions and time segments in a day. However, few

existing works take such inherent diversity into consideration. Third, the traffic interdependence on

the road network is not limited to two adjacent road segments. For example, there are “hot routes”

which attract more vehicles to the road network. A series of road segments that form these “hot

routes” experience a larger traffic flow and may exhibit considerable correlations. Besides, some

geographically distant road segments may also have dependencies because of similar urban

functional areas. However, most existing works overlook these high-order and non-pairwise

correlations.

Towards addressing the turn-level traffic flow prediction problem and the aforementioned

challenges, we propose a novel GNN-based framework named DrahGNN. To accurately reflect

dynamic and complex spatial dependencies between road segments, we construct a dynamic graph

sequence based on the real-world road network and turn-level traffic flow. Further, we define a set

of spatiotemporal aware relations to explicitly represent the diversity in turn-level traffic flow and

based on them devise a novel multi-relational diffusion convolution. Moreover, to capture high-

order and non-pairwise correlations, we construct a road hypergraph in each time slice and innovate

an attentive hypergraph message passing mechanism. Our main contributions can be summarized as

follows:

– We introduce a novel graph construction method that models road network as a dynamic graph

sequence changing over time. Compared to previous works, our method requires much less prior

knowledge and, therefore, enjoys promising generalizability.

– We design a new multi-relational diffusion convolution to capture complex correlations

between road segments by explicitly exploiting spatiotemporal aware relations.

– To capture high-order and non-pairwise dependencies between road segments, we adaptively

construct a road hypergraph in each time slice. Furthermore, an attentive two-stage hyperedge

message passing mechanism incorporating relation-injection is proposed.

2. Preliminaries

2.1. Data Description

The collected data consists of the following two parts: (i) road network data; (ii) traffic flow data.

As shown in Figure 1(a), the road network is organized hierarchically, where top-down

69

components are intersections, branches, and lanes. Each intersection contains multiple branches

which can be divided into two types according to their direction: in-branch entering the intersection

and out-branch leaving the intersection. Each branch is composed of several lanes. Intersections are

connected by road segments, and each road segment corresponds to a specific starting branch and

an ending branch. In addition to the containing relations, the road network data also includes

connectivity and turn directions which are straight, left turn, right turn and U turn between different

intersections and branches.

Traffic flow data is collected by sensors deployed at end-branches of road segments. These

sensors record the traffic flow count for each turn of that branch within a specific time interval(for

example, five minutes). Combining this data with road network data, we can obtain the traffic flow

number and turn direction between any two connected road segments for any given time period.

2.2. Problem Definition

We organize turn-level traffic flow data as a time-evolving traffic flow graph sequence

 1 2, , , T , where T is the number of time slices. Each snapshot (, , ,)t t t is a

multi-relational weighted directed graph. denotes the shared node set with N , which

corresponds to the set of road segments in our scenario. t  denotes a set of weighted directed

edges at time t , with which denotes all possible links in road network. denotes a set of

spatial-temporal aware relations with P . Each edge (,) t

i jv v  is labeled with a relation

r , and represents that there exists traffic flow from node vi to v j in time slice t with its

weight indicates the count of traffic flow. Note that
t

 is dynamically changing over time.

t N N is adjacency matrix of t . We denote initial node feature of t as t N FX where F

is the dimension of node feature. We define our turn-level traffic flow prediction as a regression

problem as follows:

Give a historical observed turn-level traffic flow graph sequence  1 2, , , T with their

corresponding node feature
1 2, , , T

X X X , and road network data , we aim to learn a function

to forecast the weight on edges of graph 1T in next time slice(i.e., adjacency matrix 1T ):

 1: 1, , .T TX (1)

3. Methdology

Figure 2: Framework overview of DrahGNN.

70

3.1. Multi-relational Diffusion Convolution

Figure 2 shows an overall architecture of our proposed DrahGNN framework. We first introduce

multi-relational diffusion convolution mudole. This component aims to model the complex

spatiotemporal correlations between road segments. As shown in Figure 1(b), the traffic flow

presents diverse patterns under different turn directions and time segments. To capture such

diversity, we propose to first define multiple turn-level spatiotemporal relations between segments,

and then perform relation-aware aggregation on the road network.

The multiple relations between road segments are constructed from a joint spatiotemporal

perspective. At the spatial dimension, we distinguish four turn directions of two connected road

segments, which are straight, left turn, right turn and U turn. It can model the diversity of traffic

patterns under different turns. Furthermore, for the temporal dimension, we evenly divided a day

into n time segments, where different relations are built to model varying dependencies between

road segments in different time segments. By integrating these two dimensions, we can define 4 n

relations in to capture diverse spatiotemporal traffic patterns.

Next, we design a multi-relational diffusion convolution (MRDC) to aggregate the traffic

information, with the awareness of multiple spatiotemporal relations. Following [10], it collects

messages from both upstream and downstream road segments in different orders based on diffusion

convolution. However, rather than making no distinction among adjacent segments, our model

processes their messages in a relation-specific way.

We initialize a representation rh for each relation in : ,F

r r  h . To explicitly

incorporate multiple relations into diffusion convolution, we employ the multiplication operation to

compose nodes and relations. Specifically,

(,) ,v r v r  h h h h (2)

where : F F F   is a composition function,  means element-wise production, vh and

rh are embedding of node v and relation r , respectively.

We next give the recursive and accumulation procedures of multi-relational diffusion

convolution. The update equation of the 1k  step of recursion can be given as:

,1

(,) ()

(,),
in in

in

u vk k

v u rin
u r v v

e

deg




 h h h (3)

where
1

in

k

v

h is in-embedding of node v in step 1k  which aggregates its incoming neighbors,

()in v is a set of direct neighbors of v for its incoming edges, edge (,) tu v  , ,u ve is the edge

weight from source node u to target node v , ,

(,) ()in

in

v u v

u r v

deg e


  is the in-degree of node v ,
in

k

uh

and rh are in-embedding of node u in step k and embedding of relation r . Similarly, we can

obtain the out-embedding of node v in step 1k  through the aggregation of its outgoing neighbors:

,1

(,) ()

(,).
out out

out

v wk k

v w rout
w r v v

e

deg




 h h h (4)

With
0 0

in outv v v h h x , where vx is the initial representation of node v , the output embedding in

this module of node v is accumulation of all recursion steps:

71

0, 1,

0

(()), ,
in out

K
mrdc k k

v k v k v

k

v


  h θ h θ h (5)

where  is the activation function, K is the diffusion step, and 0,kθ and 1

1,

F F

k


θ are two

trainable weight matrix. These parameters are shared across each time slice. Further, we output the

relation embedding as:

, ,r rel r r z W h (6)

where 1F F

rel


W is a trainable weight matrix. The embedding of relations is transformed into

the same space as the node embedding, and is to be used in the subsequent modules.

3.2. Road Hypergraph Learning

In the scenario of turn-level traffic flow prediction, the long-range interactions on the road

network can have effects on the traffic flow from a global perspective. However, GNNs may fall

short in capturing non-pairwise relationships between road segments, while the over-smoothing

problem [16] poses a significant challenge in representing high-order correlations. To overcome this

limitation, we propose the integration of a hypergraph attention network at the road level. We first

provide a definition of the road hypergraph for a road network. Then, we devise the adaptive

hyperedge generation scheme in a hybrid manner to comprehensively represent the non-pairwise

structure. Furthermore, the attentive hypergraph message passing process is proposed for high-order

context learning.

Definition (Road Hypergraph.) A road hypergraph can be defined as a graph (,) , where

 is the set of road segment nodes with N and represents the set of hyperedges

with M . A hyperedge is referred to as multi road segments and can be viewed as a subset of ,

which can contain any number of nodes. The connectivity relationship between nodes and

hyperedges can be represented as an incident matrix  0,1
N M

T . 1ij T means that hyperedge

js  contains node iv  .

3.2.1. Road Hyperedge Generation

To model "hot routes" explained in Section 1, we incorporate random walks on a weighted

directed graph to construct hyperedges. A random walk serves as a dynamic process initiated from

an arbitrary node within the graph, progressively moving towards downstream neighbors at each

step until a predefined number of steps is reached or no further downstream neighbors can be found.

The ordered sequence of nodes encountered forms a random walk sequence. In each step, the

transition probability is calculated based on the edge weights. We sample a fixed number of c

distinct random walk sequences for each node on graph t . Consider each sequence as a hyperedge,

we get 1M N c  hyperedges and a incident matrix 1

1

N M
T .

As explained in Section 1, road segments that are not geographically close to each other may still

have correlations. To capture these implicit dependencies in the latent space, we adaptively learn a

set of hyperedges inspired by [11,17]. Specifically, we initialize a node embedding
N D

v

E and a

hyperedge embedding 2M D

h


E . Then the adaptive hyperedges can be learned by:

T

2 ReLU(tanh()),v hT E E
 (7)

72

where
T

hE means the transpose of hE . Then we set the first p largest elements in each column of

matrix 2T to 1, and the remaining elements to 0. vE and hE will be trained during model training.

Thus we get another incident matrix 2

2

N M
T . The final incident matrix of t is the

concatenation of 1T and 2T :

 1 2 , T T T‖ (8)

where ‖ means the concatenation operation, N MT where 1 2M M M  .

3.2.2. Attentive Hypergraph Message Passing

After obtaining the incident matrix, we further perform the attentive message passing mechanism

in a node-hyperedge interactive manner.

Node  Hyperedge Aggregation. The connections from road segment nodes to the same

hyperedge can be regarded as implicit distant-range relations. Specifically, we initialize hyperedge

representation
init

sh using the relation embedding rZ and a learnable weight
1 Pβ :

init

s rh βZ ,

which incorporates the relational context for hypergraph learning. Considering the different

"hotness" of each node in a hyperedge, the relation-injected aggregation from road segment nodes

to the hyperedge can be expressed as:

1 (),

,

s v v r

v s

in out

v v
v

e

e

deg deg

w









  








h W x βZ

 (9)

where sh and vx are the embeddings of hyperedge s and node v , respectively, v s means that

node v is connected to hyperedge s , ew is the weight of the edge e ,  is the multiplication

operation and 1W is a trainable weight matrix.

HyperedgeNode Attention. After getting all hyperedge embeddings, we conduct a multi-head

hyperedge-to-node attention mechanism, which considers the importance of road substructures and

propagates hyperedges back to nodes with different weights:

2(),
v

b

v vs s

s

 


 h W h
 (10)

where
b

vh is the output embedding of node v in the b -th attention head,  is the activation

function, v is the set of hyperedges that connected to node v , vs is the attention coefficient

between node v and hyperedge s , sh is the embedding of hyperedge s obtained from the node-to-

hyperedge stage, 2W is another trainable weight matrix. vs can be computed as follows:

 

T

T

2 1

exp()
,

exp()

LeakyReLU()

v

s
vs

t

t

s s v










a l

a l

l W h W x‖

 (11)

where T
a is a trainable attention weight vector. We concatenate node embeddings from different

73

attention heads to form the final node representation in this module:

1 2 , ,hyper B

v v v v v   h h h h‖ ‖ ‖ (12)

where B is the number of attention heads.

3.3. Prediction Module

After getting node embeddings from the MRDC module and hypergraph learning module, we

concatenate these two embeddings in each time slice to get the final spatial embedding of each node:

 ,
t t t

sp mrdc hyper

v v v v   h h h‖ (13)

where
t

sp

vh ,
t

mrdc

vh and
t

hyper

vh are final spatial embedding, multi-relational diffusion convolution

embedding and hypergraph embedding of node v in time slice t , respectively. Thus, for each node

in , we get a sequence of embedding vector 
1

T
sp

t t
h . We take these sequences as the input of a

gated recurrent unit (GRU)[18], which is a simple yet powerful variant of RNN, and take the hidden

state at last time slice T as the final embedding of each node which contains both spatial and

temporal information:

 
1

GRU(),
T

final sp

v t t
h h (14)

where
final

vh is the final embedding of node v . We use this final embedding and relation

embedding to predict adjacent matrix 1T of the next time slice:

1 sigmoid(Linear()),T final final

uv u r v

   h h h (15)

where
final

uh and
final

vh are the final embeddings of node u and node v , respectively. The relation

embedding between node u and node v is denoted as rh . 1T

uv

 is the corresponding value in 1T ,

 is the element-wise production, Linear() is a linear transformation which transforms the vector

to a scalar score.

Finally, we adopt Mean Absolute Error (MAE) as loss function.

4. Experiments

4.1. Experimental Setup

Table 1: Statistics of Datasets.

Description DatasetA DatasetB

road segments 724 1043

intersections 218 317

time slices 1152 2976

average links 1018 973

possible existing links 1654 2182

time range 12/14/2021 - 12/25/2021 1/1/2023 - 1/31/2023

average traffic flow 32.77 14.89

max traffic flow 130 80

Dataset. We evaluate our DrahGNN framework on two real-world datasets. The first dataset,

74

which we called datasetA, contains 12 days of traffic flow (from December 14, 2021, to December

25, 2021) in a city in China. The second dataset called datasetB, contains 31 days of traffic flow

(from January 1st, 2023, to January 31, 2023) in another city in China. Both datasets are recorded

with a 15-minute interval. The detailed statistics are listed in Table 1.

In our experiments, we set the duration of the time slice and input length to 15 minutes and 6,

respectively. Min-max normalization is used to scale the traffic flow values into [0, 1].

Baselines. We compared DrahGNN with following baselines:
– HA[19] uses the average value of historical observations as the prediction value of future time.
– ARIMA[3] is a classical time series model for predicting future values.
– LSTM [20] is powerful variant of RNN.
– DCRNN[10] defines diffusion convolution and incorporates it into a GRU.
– STGCN[12] combines GCN with a 1D gated temporal convolution.
– Graph WaveNet[11] learns an adaptive adjacent matrix and combines GCN with temporal

convolution.
– ASTGCN[21] incorporates spatial-temporal attention mechanism and fuse attention matrix

with GCN.
– STSGCN[15] constructs a localized spatial-temporal graph using spatial graphs at consecutive

time steps to capture localized spatial-temporal correlations synchronously.
– STFGNN [14] incorporates DTW [3] technique and then constructs a spatial-temporal fusion

graph, where this static adjacent matrix involves temporal information.
– DSTAGNN[13] utilizes Wasserstein distance [18] and spatial-temporal at tention mechanism

to capture dynamic spatial-temporal correlations.

Implementation Details. We split the dataset into training set, validation set and test set as 7:1:2,

and the hyper-parameters for all models are set according to the performance on the validation set.

In DrahGNN we set the diffusion step 5K  in MRDC. The number of time segments divided in

each day is 12n  , i.e., each time segment equals 2 hours and contains 8 time slices. In hypergraph

construction, the number of distinct random walk and the walk length sampled per node is 20 and

15, respectively. Besides, we build 200 adaptive hyperedges, each of which contains 100 nodes.

And the number of attention heads in the hyperedge-to-node stage is 4. We adopt the AdamW

optimizer to train our model, with an initial learning rate set to 0.001, and 0.1 decay factor for every

18 epochs. Additionally, an early stopping strategy is employed.

Evaluation Protocol. We adopt three widely used evaluation metrics to evaluate the

performance of the model: mean absolute error (MAE), mean absolute percentage error (MAPE),

and root mean squared error (RMSE). Note that for MAE and RMSE, only possibly existing edges

are computed, and for MAPE, only edges with non-zero ground truth values are computed.

4.2. Overall Performance

Table 2 and Table 3 show the overall performance comparison between our DrahGNN and

different baselines on two datasets. The results indicate that DrahGNN surpasses other baselines in

terms of overall performance for turn-level traffic flow prediction. Furthermore, we have the

following findings: (i) Deep learning-based methods perform better than statistical methods, i.e.,

HA and ARIMA. This is because statistical methods only forecast future traffic flow using a simple

statistical approximation of historical observations, which cannot capture complex correlations

between road segments. (ii) GNN-based methods are better than other methods (i.e., HA, ARIMA

and LSTM). This implies that utilizing graph structure to capture spatial dependencies is critical in

traffic flow prediction problems. (iii) Among GNN-based models, those using a static, geometric

distance-based adjacent matrix (i.e., DCRNN, STGCN, ASTGCN and Graph Wavenet) perform

75

worse than those incorporating a computed adjacent matrix that contains spatial-temporal

information (except STFGNN on datasetB). This reveals the importance of an accurate and dynamic

adjacent matrix in traffic flow prediction. The relatively poor performance of Graph Wavenet

reveals its drawbacks: it cannot simultaneously stack spatial-temporal layers and expand the

receptive field of one-dimensional convolutions. (iv) Due to the Chinese New Year which included

in time span of datasetB, the traffic flow in this dataset is sparser and the values of traffic flow are

smaller. These pose a greater challenge and difficulty for the performance of the prediction models.

Under this situation, the performance of STFGNN significantly decreases, indicating a drawback of

STFGNN: the DTW[22] technique it uses struggles to capture correlations between high-

dimensional time series in sparse data scenarios. (v) Though DSTAGNN slightly outperforms

DrahGNN in terms of the MAPE metric on datasetA, it performs considerably poorly in terms of

MAE and RMSE, which indicates its ability to predict non-zero values is better than that of zero

values. This is because the Wasserstein distance [18] it employs cannot capture the diversity of

traffic flow in different turn directions. In terms of overall performance, DrahGNN is more suitable

for turn-level traffic flow prediction.

Table 2: Performance comparison of turn-level traffic flow prediction of our DrahGNN and

baselines on datasetA.

Method HA ARIMA LSTM DCRNN STGCN GWN ASTGCN DSTAGNN STSGCN STFGNN DrahGNN

Category Statistical Statistical RNN GNN GNN GNN GNN GNN GNN GNN GNN

MAE 4.2209 3.5742 3.3498 3.2653 3.1255 3.4969 3.0073 3.3301 2.9281 2.9691 2.4652

RMSE 9.5449 7.3675 6.3755 6.5509 5.9065 7.3063 6.0469 7.1137 5.9994 5.9431 4.7154

MAPE(%) 45.82 44.56 39.97 43.81 38.81 45.57 35.69 32.17 34.62 38.01 33.42

Table 3: Performance comparison of turn-level traffic flow prediction of our DrahGNN and

baselines on datasetB.

Method HA ARIMA LSTM DCRNN STGCN GWN ASTGCN DSTAGNN STSGCN STFGNN DrahGNN

Category Statistical Statistical RNN GNN GNN GNN GNN GNN GNN GNN GNN

MAE 2.3005 2.0172 1.8995 1.8701 1.8493 1.9895 1.7977 1.8824 1.7721 3.6867 1.6682

RMSE 5.6091 4.2309 4.4546 4.2087 4.0628 4.7537 4.0392 4.5847 4.1037 8.0579 3.4039

MAPE(%) 61.69 58.12 98.07 56.05 56.01 58.23 56.01 58.19 56.13 73.35 55.62

4.3. Ablation Study

To further validate the effectiveness of each design of our model, we further compare DrahGNN

with its two variants on dataset A:
– w/o hyper: It removes the entire hypergraph module.
– w/o rel & hyper: It removes the entire hypergraph module and relation mechanism, where the

model only contains the vanilla diffusion convolution module.

Figure 3: Ablation experimental results.

As we can see from the comparing results in Figure 3, DrahGNN performs better than its

variants in terms of MAE and RMSE, which demonstrates the effectiveness of each component of

DrahGNN. However, in terms of the MAPE metric, the performance of DrahGNN did not show a

significant improvement and even slightly decreased. This is because when calculating MAPE, we

76

only consider the edges where the ground truth values are non-zero. This implies that the model has

improved its prediction accuracy for zero values without sacrificing overall performance.

4.4. Parameter Sensitivity

Figure 4: Impact of different diffusion steps K and number of time segments n.

In order to analyze the impact of different diffusion steps K in MRDC and the number of time

segments n in a day, we conducted experiments over these two parameters on datasetA. The results

are shown in Figure 4. Specifically, in terms of K, we set it varying from 1 to 6, and observe the

performance of model. We observed that as K increases, the MAE on the test set gradually

decreases, indicating an improvement in model performance. This is reasonable because K can be

viewed as the receptive field of diffusion convolution. A larger K allows the model to aggregate

information from neighbors at higher order, thereby capturing more complex spatial correlations.

However, with K continues to increase, we observed a decline in model performance. Similar to the

over-smoothing issue caused by stacking too many layers in GCN, this suggests that we cannot

increase K without limitations. In terms of n, we vary it in [3, 4, 6, 8, 12, 24], as can be seen the

performance of model improves with n increasing. But when n = 24, the model performance

decreases which implies that it is not advisable to divide time segments into excessively fine

granularity.

5. Related Work

5.1. Graph Based Traffic Forecasting

Recently, GNN has been widely used in traffic forecasting due to its ability of representing non-

euclidean data. Specifically, DCRNN[10] models traffic flow as a diffusion process and fuses this

process into a RNN-based sequence to sequence framework. STGCN[12] exploits GCN[23] and

temporal convolution to represent spatial-temporal simultaneously. However, these methods capture

spatial dependencies only using a static adjacent matrix defined based on geographical distance,

which may be imprecise and cannot represent dynamic dependencies. In order to explore spatial

dependencies beyond geographical distance, Graph Wavenet[11] and AGCRN[24] propose to learn

hidden graph structure using trainable node embedding.

There are also some methods of studying a new graph structure that reflects complex spatial-

temporal dependencies between roads more precisely. STFGNN [14] exploits DTW technique to

compute the similarity between time sequences of nodes to construct a spatial-temporal fusion

graph. DSTAGNN[13] emerges Wasserstein distance[25] to measure differences of traffic flow

distributions in different roads and construct a new graph to incorporate the spatial-temporal

attention mechanism. Nevertheless, none of these methods focus on turn-level traffic forecasting,

and neglect the global, non-pairwise correlation between road segments.

5.2. Multi-Relational Graph Convolution

In spite of great success in modeling graph-structured data, GCN[23] cannot be trivially applied

77

in directed multi-relational graphs, which are in a more general form and each edge has a label

indicating the relation between source and target node[26]. RGCN[27] extends GCN by using

distinct weights for different relations, and addresses the over-fitting issue by regularizing weights

with basis and block-diagonal decomposition. CompGCN [26] learns representations for both nodes

and relations and utilizes a variety of entity-relation composition operators to distinguish specific

relations. However, these methods are all extensions of GCN, which cannot be trivially used for

weighted directed graphs.

5.3. Hypergraph Neural Networks

Graphs can solely model pairwise relationships between nodes, and most GNNs suffer from the

problem of over-smoothing. To address these issues, Zhou et al.[28] proposed a hypergraph where a

hyperedge can contain an arbitrary number of nodes, which can represent high-order and non-

pairwise relationships. Feng et al.[29] propose the hypergraph neural networks (HGNN), which

performs node-edge-node transformations and can be seen as a generalization of spectral

convolution to hypergraph. Ding et al.[30] construct a hypergraph using sequential and semantic

hyperedges, then propose a dual attention mechanism to perform inductive text classification. These

works have demonstrated the superiority of hypergraphs in capturing higher-order and non-pairwise

relationships.

6. Conclusion

In this paper, we investigated the turn-level traffic flow prediction problem and proposed a novel

GNN approach built upon Dynamic Relation Awareness and Hypergraph modeling (DrahGNN) to

solve it. We constructed a dynamic graph sequence that can represent precise and dynamic

correlations between road segments. In order to capture the diversity in turn-level traffic flow, we

defined a set of spatiotemporal aware relations, based on which we designed a multi-relational

diffusion convolution. Furthermore, to extract high-order and non-pairwise correlations between

road segments, we constructed a hypergraph in each time slice and then designed an attentive two-

stage hypergraph message-passing mechanism that incorporates relation injection. Extensive

experiments on real-world datasets demonstrate DrahGNN’s effectiveness and performance

superiority over state-of-the-art baselines.

References

[1] Fang, M., Tang, L., Yang, X., Chen, Y., Li, C., Li, Q.: Ftpg: A fine-grained traffic prediction method with graph

attention network using big trace data. IEEE Transactions on Intelligent Transportation Systems 23(6), 5163–5175

(2021).

[2] Kan, Z., Tang, L., Kwan, M.P., Ren, C., Liu, D., Li, Q.: Traffic congestion analysis at the turn level using taxis’ gps

trajectory data. Computers, Environment and Urban Systems 74, 229–243 (2019).

[3] Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal causal interactions in traffic data

streams. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining.

pp. 1010–1018 (2011).

[4] Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: An experimental comparison of time-series

analysis and supervised learning. IEEE Transactions on Intelligent Transportation Systems 14(2), 871–882 (2013).

[5] Li, Y., Shahabi, C.: A brief overview of machine learning methods for short-term traffic forecasting and future

directions. Sigspatial Special 10(1), 3–9 (2018).

[6] Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z.: Revisiting spatial-temporal similarity: A deep learning framework for

traffic prediction. In: Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 5668–5675 (2019).

[7] Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., Li, Z.: Deep multi-view spatial-temporal network

for taxi demand prediction. In: Proceedings of the AAAI conference on artificial intelligence. vol. 32 (2018).

[8] Zhang, J., Zheng, Y., Qi, D.: Deep spatio-temporal residual networks for citywide crowd flows prediction. In:

78

Proceedings of the AAAI conference on artificial intelligence. vol. 31 (2017).

[9] Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X.: Dnn-based prediction model for spatiotemporal data. In: Proceedings of

the 24th ACM SIGSPATIAL international conference on advances in geographic information systems. pp. 1–4 (2016).

[10] Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: Data-driven traffic

forecasting. arXiv preprint arXiv:1707.01926 (2017).

[11] Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatialtemporal graph modeling. arXiv

preprint arXiv:1906.00121 (2019).

[12] Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: A deep learning framework for traffic

forecasting. arXiv preprint arXiv:1709.04875 (2017).

[13] Lan, S., Ma, Y., Huang, W., Wang, W., Yang, H., Li, P.: Dstagnn: Dynamic spatialtemporal aware graph neural

network for traffic flow forecasting. In: International Conference on Machine Learning. pp. 11906–11917. PMLR

(2022).

[14] Li, M., Zhu, Z.: Spatial-temporal fusion graph neural networks for traffic flow forecasting. In: Proceedings of the

AAAI conference on artificial intelligence. vol. 35, pp. 4189–4196 (2021).

[15] Song, C., Lin, Y., Guo, S., Wan, H.: Spatial-temporal synchronous graph convolutional networks: A new

framework for spatial-temporal network data forecasting. In: Proceedings of the AAAI conference on artificial

intelligence. vol. 34, pp. 914– 921 (2020).

[16] Rusch, T.K., Bronstein, M.M., Mishra, S.: A survey on oversmoothing in graph neural networks. arXiv preprint

arXiv:2303.10993 (2023).

[17] Wu, J., Qi, Q., Wang, J., Sun, H., Wu, Z., Zhuang, Z., Liao, J.: Not only pairwise relationships: Fine-grained

relational modeling for multivariate time series forecasting. In: IJCAI (2023).

[18] Cho, K., Van Merri ënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning

phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078

(2014).

[19] Hamilton, J.D.: Time series analysis. Princeton university press (2020).

[20] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997).

[21] Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for

traffic flow forecasting. In: Proceedings of the AAAI conference on artificial intelligence. vol. 33, pp. 922–929 (2019).

[22] Deng, J.J., Leung, C.H.: Dynamic time warping for music retrieval using time series modeling of musical emotions.

IEEE transactions on affective computing 6(2), 137–151 (2015).

[23] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint

arXiv:1609.02907 (2016).

[24] Maganioti, A.E., Chrissanthi, H.D., Charalabos, P.C., Andreas, R.D., George, P.N. and Christos, C.N. (2010)

Cointegration of Event-Related Potential (ERP) Signals in Experiments with Different Electromagnetic Field (EMF)

Conditions. Health, 2, 400-406.

[25] Panaretos, V.M., Zemel, Y.: Statistical aspects of wasserstein distances. Annual review of statistics and its

application 6, 405–431 (2019).

[26] Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multirelational graph convolutional networks.

arXiv preprint arXiv:1911.03082 (2019).

[27] Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.: Modeling relational data with

graph convolutional networks. In: The Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Crete,

Greece, June 3–7, 2018, Proceedings 15. pp. 593–607. Springer (2018).

[28] Zhou, D., Huang, J., Sch ölkopf, B.: Learning with hypergraphs: Clustering, classification, and embedding.

Advances in neural information processing systems 19 (2006).

[29] Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: Proceedings of the AAAI conference

on artificial intelligence. vol. 33, pp. 3558– 3565 (2019).

[30] Ding, K., Wang, J., Li, J., Li, D., Liu, H.: Be more with less: Hypergraph attention networks for inductive text

classification. arXiv preprint arXiv:2011.00387 (2020).

79

