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Abstract: Safety production is of paramount importance in protecting the safety, health of 

workers and assets. Safety helmets play a crucial role across various industries, directly 

impacting the wearer's life safety. In response to the prevalent issue of many workers not 

wearing safety helmets, coupled with high cost and risks associated with manual safety 

helmet detection, current automated methods are difficult to detect safety helmet usage at a 

large scale, complex on-site environments. This paper proposes a safety helmet detection 

method based on adjusting YOLOv8. Adjustments to the backbone network of YOLOv8 

were replaced by DenseNet121 and appropriate data augmentation methods were designed. 

This method achieved an accuracy of 96.81% in the Safety Helmet Wearing Dataset. 

Compared to the original YOLO v8 algorithm, it achieved a 0.74% performance 

improvement. Our method enhances the accuracy of safety helmet detection, provided 

important technical support to ensure production safety. 

1. Introduction 

Safety production is of paramount importance in protecting the safety, health, of workers and 

national assets, while also serving as a cornerstone for the development of social productivity. 

Ensuring proper safety measures is of paramount importance. Safety helmets, as a form of personal 

protective equipment, play a crucial role across various industries, directly impacting the wearer's life 

safety. Designed to protect the head, they mitigate injuries from unforeseen accidents, offering 

functions such as impact resistance, abrasion prevention, puncture resistance, and electrical insulation. 

In industries such as construction, mining, power, and transportation, wearing safety helmets is 

mandatory. 

Safety helmets are essential protective tools for workers, yet many choose not to wear them due 

to discomfort, posing a threat to their safety. Therefore, real-time monitoring of whether workers are 

correctly wearing safety helmets is crucial. The hazardous and complex working environment on 

construction sites is not suitable for comprehensive manual monitoring. Moreover, compared to 

traditional manual inspections, automated detection systems can identify instances of non-compliance 

with helmet-wearing regulations more quickly and accurately, saving on labor costs. 

Existing algorithms for detecting the usage of safety helmets can be broadly categorized into two 

main types: the traditional machine learning-based object detection algorithms and the deep learning-
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based object detection algorithms. Traditional algorithms primarily extract features for safety helmet 

detection that are low-level and manually selected, such as color and shape [1]. Including the helmet 

recognition method based on edge detection [2], SVM and skin color detection [3], the method with 

modified deformable part model by a combination of histogram of block-based local binary pattern 

[4], the method used Haar-like features to detect faces and used an edge detection algorithm to find 

helmet contour features [5] and the color-based hybrid descriptor with H-SVM method are utilized 

for helmet identification [6]. Due to their simple algorithmic structure, traditional algorithms require 

less computational resources and exhibit faster detection speeds. However, in complex project site 

environments, the detection accuracy of traditional methods for safety helmet detection is relatively 

low, resulting in significant disparities from the management requirements in actual field settings. 

Deep learning-based methods offers high precision and flexibility. The majority of deep learning-

based methods focus on object detection of safety helmets as a basis for determining whether workers 

are wearing them or not. Additionally, these methods can handle large volumes of image or video 

data, making them suitable for monitoring multiple construction sites or work areas. Such scalable 

applications contribute to enhancing overall safety. There is immense potential in applying these 

techniques to safety helmet detection, offering new avenues for improving the production safety of 

on-site workers. For example, the helmet detection methods based on SSD [7-8], RCNN series [9-10] 

and YOLO series [11-13]. Although these deep learning-based methods have achieved some success 

in the field of safety helmet detection, there are still issues such as insufficient accuracy and poor 

performance in complex scenarios. Therefore, to address these concerns, we propose an adjusted 

YOLOv8-based safety helmet detection approach aimed at enhancing detection accuracy and 

adaptability to better meet practical application requirements. 

2. Methods 

Safety helmet detection technology is constrained by various objective factors. Deep learning 

algorithms need to balance accuracy with real-time performance. Additionally, considering the 

hardware costs for on-site deployment, it's essential for deep learning algorithms to have low 

computational and memory requirements, enabling efficient operation on resource-constrained 

devices. 

To achieve real-time, high-precision identification of safety helmets in various on-site scenarios, 

we propose a method based on adjusted YOLOv8 algorithm [14] for object detection of safety helmets. 

Our work involves replacing the backbone network of the original YOLOv8 algorithm and designing 

appropriate data augmentation methods, with other adjustments about training strategies. 

2.1 Original Model 

YOLOv8 was developed by Ultralytics, stands as one of the current state-of-the-art models 

supporting multiple visual tasks. It builds upon previous iterations of the YOLO series, incorporating 

improvements and new features, resulting in enhanced performance. Compared to YOLOv5 [15], 

YOLOv8 demonstrates a significant improvement in accuracy on the MS COCO dataset [16], albeit 

with an increase in parameter count. YOLOv8 achieves higher accuracy while also maintaining model 

inference speed, ensuring stronger real-time capabilities. It offers various model scales, including 

YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra 

large), each optimized with lower computational and memory requirements. This enables flexible 

selection of model scales based on specific needs and efficient operation on resource-constrained 

devices. Consequently, YOLOv8 enables real-time object detection on lower specification devices 

without significant hardware investment, enhancing device compatibility and flexibility for detection.  

The structure of YOLOv8 consists of three main components: the input, the backbone network, 
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and the head (Figure 1). The backbone consists of convolutional module (ConvModule), cross stage 

partial module (C2f) and spatial pyramid pooling fusion module (SPPF). The main idea of YOLOv8 

algorithm is partitioning the input feature map into multiple scales of grids, with each grid responsible 

for detecting targets in specific regions and generating prediction boxes for target detection by 

adjusting prior boxes associated with the grids. This concept continues the core philosophy of the 

YOLO series, which transforms the object detection problem into a single neural network prediction 

problem, achieving end-to-end processing of the entire image. YOLOv8 further introduces methods 

such as scale feature extraction and adaptive training strategies to achieve efficient, accurate, and 

versatile object detection results. 

 

Figure 1: Network architecture of YOLOv8 

2.2 Adjustments to the backbone 

Although attention-based visual models have achieved tremendous success on many public 

datasets, their extensive data requirements and hardware demands make it difficult to achieve optimal 

recognition performance on smaller datasets. For these types of visual tasks, machine learning 

methods based on convolutional neural networks remain the primary approach for visual object 

recognition. In terms of balancing model recognition accuracy and device-friendliness, DenseNet [17] 

models stand out as exemplary. 

The DenseNet network architecture was proposed by Cornell University, Tsinghua University and 

Facebook AI Research. Researchers introduced shorter connections between layers near the input and 

output layers of convolutional networks, enabling deeper, more accurate, and more efficient training. 

This concept replaces the traditional feedforward neural network connections with dense connections, 

utilizing the algorithm's feature maps as inputs for all subsequent layers. Unlike previous deep 

convolutional neural networks, DenseNet does not rely on extremely deep or wide architectures to 

extract representation capabilities. Instead, it leverages feature reuse to harness the network's potential. 

Whilst following a simple connectivity rule, DenseNets naturally integrate the properties of identity 

mappings, deep supervision, and diversified depth. Despite adding more connections, DenseNet only 

increases a small fraction of feature maps while keeping the rest unchanged. Therefore, compared to 

other architectures, DenseNet has fewer parameters and excels in computational and memory 

efficiency. Its unique layer-wise connections also alleviate the problem of gradient vanishing during 

neural network training, encourage feature reuse, and strengthen feature propagation. 

With these innovations, DenseNet has significantly improved the performance of convolutional 

neural networks across various recognition benchmarks. Therefore, in this paper, we replaced the 

backbone of the original YOLOv8 network with the DenseNet121 network architecture (Figure 2), 

enabling the object detection model to achieve better results in safety helmet detection. 
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Figure 2: Network architecture of adjusted YOLOv8 

2.3 Assessment Indices of the Drought 

During the training process of deep convolutional neural network, if the training data is limited 

and singular, the model may only learn a limited data distribution, which could lead to overfitting on 

the training set, resulting in poor performance on the test set, low generalization ability, and 

susceptibility to noise and interference. In this paper, some data augmentation steps were taken when 

training deep neural networks for safety helmet detection. These steps aim to prepare training data to 

be more representative, diverse, and informative, thereby enhancing the model's performance and 

robustness. 

3. Experiments and Results 

Data plays a crucial role in the training process of deep neural networks. Safety Helmet Wearing 

Dataset (SHWD) provide the dataset used for both safety helmet wearing and human head detection. 

It includes 7581 images with 9044 human safety helmet wearing objects (positive) and 111514 normal 

head objects (not wearing or negative). In this paper, the Mean Average Precision 50 (mAP50) on 

SHWD was chosen for evaluating the performance of the models. The dataset is randomly divided 

into training and testing sets in a ratio of 80%-20%. 

Data augmentation methods were tailored for this dataset. Partial training hyperparameters were 

outlined in the Table 1. 

Table 1: Hyperparameters of adjusted YOLOv8 

Hyperparameters Value 

epochs 200 

imgsz 1088 

optimizer auto 

close_mosaic 10 

cos_lr True 

mixup 0.1 

degrees 15 

shear 15 

dropout 0.1 

According to the model training settings in Table 1, the performance of different models is shown 
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in the Table 2. 

Table 2: Performance of different models on SHWD 

Algorithm mAP 

YOLOv4 [18]  91.4* 

Faster R-CNN [19]  91.9* 

YOLOv5 [12]  94.2* 

YOLOv8 [13]  94.36 

YOLOv5 [15]  95.31 

YOLOv5 [15]  95.77 

YOLOv8 [14] with default augmentation 96.07 

YOLOv8 [14] with tailored augmentation 96.22 (+0.15) 

Ours 96.81 (+0.74) 

The accuracy and loss changes during the training process are shown in Figure 3 and Figure 4, The 

model using DenseNet as the backbone network has lower training and testing losses than the original 

YOLOv8 algorithm. 

 

Figure 3: Changes in mAP with Epoch in different model 

 

Figure 4: Changes in loss with Epoch in different model 

Under the condition of Intel Core i9-12490F CPU and NVIDIA GeForce RTX 3080Ti GPU. The 

adjusted YOLOv8 safety helmet detection method achieved an accuracy of 96.81% in the SHWD 

dataset. Compared to the original YOLO v8 algorithm, our method achieved a 0.74% performance 

improvement. 

4. Conclusions 

To address the high cost and risks associated with manual safety helmet detection, as well as the 

inadequate accuracy and poor adaptability under complex on-site environments of existing automated 
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methods, we propose an adjusted YOLOv8 safety helmet detection algorithm. By replacing the 

original YOLOv8 backbone with DenseNet121 and designing appropriate data augmentation 

techniques, our improved YOLOv8 achieved a 96.81% accuracy on the SHWD dataset, representing 

a performance increase of 0.74% compared to the original YOLOv8 algorithm. Our method enhances 

the accuracy of safety helmet detection and provided important technical support to ensure production 

safety. 
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